数学史选讲

来源:本站原创 发布时间:2006-03-18 14:30:44 浏览次数: 【字体:

目  录

 

第一章  中国数学发展简述………………………………………………………2

§1中国古代数学发展………………………………………………………………………2

§2中国现代数学的发展 …………………………………………………………………6

第二章   名家生平简介………………………………………………………………………15

§1高斯……………………………………………………………………………15

§2 欧拉……………………………………………………………………………16

§3波利亚……………………………………………………………………………………17

§4华罗庚…………………………………………………………………………20

§5陈省身…………………………………………………………………………22

§6吴文俊…………………………………………………………………………23

第三章  罗素悖论与第三次数学危机……………………………………………………30

§1历史上的数学危机…………………………………………………………30

§2第三次数学危机产生的背景(上) …………………………………………37

§3第三次数学危机产生的背景(下)…………………………………………41

第四章五大新兴学科的建立………………………………………………………47

§1数理逻辑………………………………………………………………………47

§2抽象代数学…………………………………………………………………51

§3测度与积分理论………………………………………………………………55

§4泛函分析………………………………………………………………………57

§5拓扑学…………………………………………………………………………59

 

 

 

 

 

第一章  中国数学发展简述

§1中国古代数学发展

数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。

1 中国古代数学的萌芽

原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。

西安半坡出土的陶器有用18个圆点组成的等边三角形和分正方形为100个小正方形图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。

商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。

公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。

春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。

战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。

而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端()等等。

墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。

名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。

2、中国古代数学体系的形成

秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。

《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。

《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。

这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。

《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。

3、中国古代数学的发展

魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。

赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。

刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为157/503927/1250

刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。

东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.14159263.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。

据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久;

祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。

隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。

唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。

算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。

唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。

4、中国古代数学的繁荣

960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。

1114世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。

从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。

把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类乘除捷法”卷,介绍了原书中22个二次方程和1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。

秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。

元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。

用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。

从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。

朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。

勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。

已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。

中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。

宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。

5、中西方数学的融合

中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。

16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。

从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。

随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的著作在国内外流传很广,影响很大。

1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。

在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。

其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。

1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表]《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。

清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学著作13种共40)、年希尧《视学》等。梅文鼎是集中西学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的著作。

清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学百科全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。

综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。

雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。

随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。

与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记-《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学著作传世的不足50),和明末以来介绍西方天文数学的传教士41人。这部著作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术界颇有影响。

1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学著作。

其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。

《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。

在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。

由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。

§2中国现代数学的发展

中国传统数学在宋元时期达到高峰,以后渐走下坡路.20世纪重登世界数学舞台的中国现代数学,主要是在西方数学影响下进行的.

西方数学比较完整地传入中国,当以徐光启(15621633)和利玛窦(Mattao Ricci 15521610)翻译出版《几何原本》前六卷为肇始,时在1607年.清朝初年的康熙帝玄烨(16541722),曾相当重视数学,邀请西方传教士进宫讲解几何学、测量术和历法,但只是昙花一现.鸦片战争之后,中国门户洞开,再次大规模吸收西方数学,其主要代表人物是李善兰(18111882).他熟悉中国古代算学,又善于汲取西方数学的思想.1859年,李善兰和英国教士伟烈亚力(Alexander Wylie18151887)合译美国数学家鲁米斯(Elias Loomis 18111889)所著的《代微积拾级》(Elements of AnalyticalGeometry and of the Differenfial and Integral Calculus),使微积分学思想首次在中国传播,并影响日本.李善兰在组合数学方面很有成就.著称于世的有李善兰恒等式:

1866年,北京同文馆增设天文算学馆,聘李善兰为第一位数学教习.由于清廷政治腐败,数学发展十分缓慢.反观日本,则是后来居上.日本在1870年代还向中国学习算学,《代微积拾级》是当时日本所能找到的最好的微积分著作.但到1894年的甲午战争之后,中日数学实力发生逆转. 1898年,中国向日本大量派遣留学生,其中也包括数学方面的留学生.

1911年辛亥革命之前,有三位留学国外的数学家最负盛名.第一位是冯祖荀(18801940),浙江杭县人.1904年去日本京都第一高等学校就读,然后升入京都帝国大学研修数学.回国后曾在北京大学长期担任数学系系主任.第二位是秦汾(18871971),江苏嘉定人.1907年和1909年在哈佛大学获学士和硕士学位.回国后写过许多数学教材.担任北京大学理科学长及东南大学校长之后,弃学从政,任过财政部次长等.郑桐荪(18871963)在美国康奈尔大学获学士学位(1907),以后在创建清华大学数学系时颇有贡献.

由于1908年美国退回部分庚子赔款,用于青年学生到美国学习.因此,中国最早的数学博士多在美国获得.胡明复(18911927)1917年以论文“具边界条件的线性微积分方程”(Lin-ear Integro-Differential Equations with BoundaryCondition),在哈佛大学获博士学位,是中国以现代数学研究获博士学位的第一人.他返国后办大同大学,参与《科学》杂志的编辑,很有声望,惜因溺水早逝.1918年,姜立夫(18901978)亦在哈佛大学获博士学位,专长几何.他回国后办南开大学,人才辈出,如陈省身、江泽涵、吴大任等,姜立夫是中国现代数学的先驱,曾任中央研究院数学研究所首任所长.

本世纪20年代,中国各地的大学纷纷创办数学系.自国外留学回来的数学家担任教授,开始培养中国自己的现代数学人才.其中比较著名的有熊庆来(18931969)1913年赴法国学采矿,后改攻数学.1921年回国后在东南大学、清华大学等校任数学教授,声誉卓著.1931年再度去法国留学,获博士学位(1933),以研究无穷级整函数与亚纯函数而闻名于世.

陈建功(18931971)和苏步青(1902)先后毕业于日本东北帝国大学数学系.他们分别于1930年和1931年回国,在浙江大学担任数学教授.由于锐意进取,培植青年,使浙江大学成为我国南方最重要的数学中心.陈建功以研究三角函数论、单叶函数论及函数逼近论著称.他在1928年发表的《关于具有绝对收敛傅里叶级数的函数类》,指出:有绝对收敛三角级数的函数的充要条件是杨(Young)氏函数,此结果与英国数学大家哈代(GHHardy)和李特尔伍德(J E Littlewood)同时得到.这可以标志中国数学研究的论文已能达到国际水平.苏步青以研究射影微分几何而著称于世.他的一系列著作《射影曲线概论》,《一般空间微分几何》、《射影曲面概论》等,在国内外都产生相当影响,曾被称为中国的微分几何学派.1952年,他们从浙江大学转到上海复旦大学,使复旦大学数学系成为中国现代数学的重要基地.

 

1930年前后,清华大学数学系居于中国数学发展的中心地位.系主任是熊庆来,郑桐荪是资深教授.另外两位教授都在1928年毕业于美国芝加哥大学数学系,获博士学位.其中孙光远(18971984)专长微分几何,他招收了中国的第一名数学硕士生(陈省身),杨武之(18981975)则专长代数和数论,以研究华林(Waring)问题著称.这时的清华,有两个杰出的青年学者,这就是来自南开大学的陈省身和自学成才的华罗庚.

陈省身于1911年生于浙江嘉兴.1926年入南开大学,1930年毕业后转到清华,翌年成为孙光远的研究生,专习微分几何.1934年去汉堡大学,在布拉士开(WBla-schke)指导下获博士学位(1936),旋去巴黎,在嘉当(ECartan)处进行访问,得其精华.1937年回国后在西南联大任教.抗日战争时期,受外尔(HWeyl)之邀到美国普林斯顿高等研究院从事研究,以解决高维的高斯—邦内(GaussBonnet)公式,提出后来被称为“陈省身类”的重要不变量,为整体微分几何奠定基础,其影响遍及整个数学.抗日战争结束后返国,任中央研究院数学研究所代理所长,培植青年数学家.1949年去美国.1983年获世界5高数学奖之一的沃尔夫奖(WilfPrize)

华罗庚(19101985)是传奇式的数学家.他自学成才,1929年他只是江苏金坛中学的一名职员,却发表了《苏家驹之代数的五次方程解法不能成立之理由》,此文引起清华大学数学教授们的注意,系主任熊庆来遂聘他到清华任数学系的文书,华罗庚最初随杨武之学习数论,在华林问题上很快作出了成果,破例被聘为教员.1936年去英国剑桥大学,接受哈代的指导.抗日战争时期,华罗庚写成《堆垒素数论》,系统地总结、发展与改进了哈代与李特尔伍德的圆法,维诺格拉多夫(И.М.Виноградов)的三角和估计方法,以及他本人的方法.发表至今已40年,主要结果仍居世界领先地位,仍是一部世界数学名著.战后曾去美国.1950年返回中国,担任中国科学院数学研究所的所长.他在数论,代数,矩阵几何,多复变函数论以及普及数学上的成就,使他成为世界级的著名数学家.他的名字在中国更是家喻户晓,成为“聪敏”、“勤奋”的同义语.

三十年代初的清华大学,汇集了许多优秀的青年学者.在数学系先后就读的有柯召(1910),许宝騄(19101970),段学复(1914),徐贤修(1911),以及物理系毕业、研究应用数学的林家翘(1916)等等,后来均成为中国数学的中坚以及世界著名数学家.

许宝騄是中国早期从事数理统计和概率论研究,并达到世界先进水平的一位杰出学者.19381945年间,他在多元分析与统计推断方面发表了一系列论文,以出色的矩阵变换技巧,推进了矩阵论在数理统计中的应用,他对高斯—马尔可夫模型中方差的最优估计的研究,是许多研究工作的出发点.50年代以来,为培养新中国的数理统计学者和开展概率统计研究作出许多贡献.

林家翘是应用数学家,清华大学毕业后去加拿大,美国留学.从师流体力学大师冯·卡门(von Karman)1944年,他成功地解决了争论多年的平行平板间的流动稳定性问题,发展了微分方程渐近理论的研究.60年代开始,研究螺旋星系的密度波理论,解释了许多天文现象.

北京大学是我国的最高学府.20年代军阀混战时期,因经费严重不足,学术水平不及由美国退回庚款资助的清华大学数学系.进入30年代,以美国退回庚款为基础的中华文化教育基金会也拨款资助北京大学,更由于江泽涵(1902)在哈佛大学获博士学位后加盟北大,程毓淮(1910)获德国哥廷根大学博士学位后来北大任教,阵容渐强.学生中有后来成名的樊畿(1916),王湘浩(19151993)等.

三十年代的中国青年数学家还有曾炯之(18971943),他在哥廷根大学跟随杰出的女数学家诺特(ENoether)研究代数,1933年完成关于“函数域上可除代数”的两个基本定理,后又建立了拟代数封闭域层次论,蜚声中外.抗日战争时期因贫病在西昌去世.周炜良(1911)为清末民初数学家周达之子,家庭富有,在美国芝加哥大学毕业后,转到德国莱比锡大学,在范·德·瓦尔登(Van der Waerden)指导下研究代数几何,于1936年获博士学位,一系列以他名字命名的“周坐标”“周形式”、“周定理”“周引理”,使他享有盛誉.抗日战争胜利后去美国约翰·霍普金斯大学任教,直至退休.

1935年,中国数学会在上海成立.公推胡敦复(18861978)为首届董事会主席.会上议决出版两种杂志.一种是发表学术论文的《中国数学会学报》,后来发展成今日的《数学学报》,一种是普及性的《数学杂志》,相当于今之《数学通报》.中国数学会的成立,标志中国现代数学已经建立,并将很快走向成熟.

最早访问中国的著名数学家是罗素(BAWRussel),他于19208月到达上海,在全国各地讲演数理逻辑,由赵元任做翻译,于次年7月离去.法国数学家班勒卫(PPainleve)和波莱尔(EBovel)也在20年代未以政治家身份访华.1932年,德国几何学家布拉希开(WBlaschk)到北京大学讲学,陈省身、吴大任等受益很多.19321934年间,汉堡大学年轻的拓扑学家斯披涅儿(ESperner)也在北京大学讲课.19344月,美国著名的常微分方程和动力系统专家伯克霍夫(G.D.Birkhoff)也到过北大.此后来华的是美国哈佛大学教授奥斯古德(WFOsgood),他在北京大学讲授函数论(19321934)

控制论创始人,美国数学家维纳(NWiener)来清华大学电机系访问,与李郁荣(1904)合作研究电网络,同时在数学系讲授傅里叶变换理论等.维纳于1936年去挪威奥斯陆参加国际数学家大会,注明他是清华大学的代表.

抗日战争开始之后,中国现代数学发展进入一个新时期.一方面是异常清苦的战时生活,与外界隔绝的学术环境;另一方面则是无比高涨的研究热情,硕果累累的科学成就.在西南联合大学(北大、清华、南开)的数学系,姜立夫、杨武之、江泽涵等领导人正值中年,而刚满30岁的年轻教授如华罗庚、陈省身以及许宝騄等,都已达到当时世界的先进水平.例如华罗庚的《堆垒素数论》,陈省身证明高斯—邦内公式,许宝騄发展矩阵论在数理统计的应用,都产生于这一时期.他们培养的学生,如王宪钟、严志达、吴光磊、王浩、钟开莱,日后都成为著名数学家.与此同时,位于贵州湄潭的浙江大学,也由陈建功、苏步青带领,造就出程民德、熊全治、白正国、杨忠道等一代数学学者.如果说,在20年代,中国创办的大学已能培养自己的数学学士,那么在30年代的北大、清华、浙大等名校,已能培养自己的数学硕士,而到抗日战争时期的40年代,从教员的学术水准,开设的课程以及学生的成绩来看,应该说完全能培养自己的数学博士了.从1917年中国人第一次获得数学博士,到实际上具备培养自己的数学博士的水平,前后不过20余年的时间,发展不可谓不快.

1944年,中央研究院决定成立数学研究所,由姜立夫任筹备主任.不久,抗日战争胜利,于1946年在上海正式成立数学研究所,由姜立夫任所长.因姜立夫出国考察,遂由陈省身代理所长.陈省身办所的宗旨是培养青年人,首先让他们研修拓扑学,以便迅速达到当时数学发展的前沿.这时在所内工作的研究人员中,有王宪钟、胡世桢、李华宗等已获博士学位的年轻数学家,更有吴文俊、廖山涛、陈国才、杨忠道、叶彦谦、曹锡华、张素诚、孙以丰、路见可、陈杰等刚从大学毕业不久的学生.

1949年成立中华人民共和国之后,中国现代数学有了长足的发展.原来已有建树的解析数论、三角级数论、射影微分几何等学科继续发展.在全面学习苏联的50年代,与国民经济发展有密切关系的微分方程、概率论、计算数学等学科获得应有的重视,使整个数学获得全面和均衡地进步.高等学校数学系大规模招生,严谨的教学方式培养出大批训练有素的数学工作者.

在这一时期内,作出重要贡献的有吴文俊(1919).他于1940年在交通大学毕业,后去法国留学,获博士学位.他在拓扑学方面的主要贡献有关于施蒂费尔—惠特尼(Stiefel-Whit-ney)示性类的吴(文俊)公式,吴(文俊)示性类,以及关于示嵌类的研究.70年代起,吴文俊提出了使数学机械化的纲领,其一个自然的应用是定理的机器证明,这项工作现在正处于急剧发展中.吴文俊的数学机械化思想来源于中国传统数学.因此,吴文俊的工作显示出中国古算法与现代数学的有机结合,具有浓烈的中国特色.

50年代以来的一些青年数学家的工作值得注意,如陈景润、王元、潘承洞在数论方面的研究,特别是对哥德巴赫猜想的重大推进.杨乐、张广厚关于亚纯函数值分布论的研究,谷超豪在微分几何与非线性偏微分方程方面的研究,夏道行关于线性算子谱论和无限维空间上调和分析的研究,陆启铿、钟家庆在多复变函数论与微分几何方面的研究,都有国际水平的成果.80年代以来,还有姜伯驹(不动点理论)、张恭庆(临界点理论)、陆家羲(斯坦纳三元素)等人的工作,十分优秀.廖山涛在微分动力系统研究上作出了独特的贡献.

中国数学家参加国际数学家大会(International Cong-ress of Mathematics)始自1932年.北京数学物理学会的熊庆来和上海交通大学的许国保作为中国代表参加了那年在苏黎世举行的会议.中山大学的刘俊贤则是参加1936年奥斯陆会议的唯一中国代表(不计算维纳代表清华大学与会).此后由于代表权问题,中国大陆一直未派人与会.华罗庚、陈景润收到过到大会作报告的邀请.1983年,中国科学院计算数学家冯康被邀在华沙大会上作45分钟的报告,都因代表权问题未能出席.

1986年,中国在国际数学家联盟(IMU)的代表权问题得到解决:中国数学会有三票投票权,位于中国台北的数学会有两票投票权.这年在美国加州伯克莱举行的大会上,吴文俊作了45钟报告(关于中国数学史)1990年在东京举行国际数学家大会,中国有65名代表与会(不包括台北)

80年代以来,中国数学研究发展很快.从原来的中国科学院数学研究所又分立出应用数学研究所和系统科学研究所.由陈省身担任所长的南开数学研究所向全国开放,发挥了独特的作用.北京大学、复旦大学等著名学府也成立了数学研究所.这些研究机构的数学研究成果正在逐渐接近国际水平.到1988年为止,在国外出版的中国数学家的数学著作已有43种.《数学年刊》《数学学报》都相继出版了英文版,在国外的影响日增,1990年收入世界数学家名录的中国学者有927名.先后在中国国内设立的数学最高奖有陈省身奖和华罗庚奖.1990年起,为了支持数学家率先赶上世界先进水平的共同愿望,除了正常的自然科学基金项目之外,又增设了专项的天元数学基金.这一措施也大大促进了数学研究水平的提高.

在中国的台湾省,中央研究院的数学研究所是主要的数学研究机构,曾由周鸿经、樊畿等多人主持过.台湾大学集中了许多著名的数学教授.早期有施拱星、许振荣等.台湾学生在美国获博士学位并在美国各大学数学系任教的学者很多,有较大影响的有项武忠、项武义等人.

香港地区的数学教育在第二次世界大战之前没有多少力量.战后最有影响的是几何学家黄用诹,他从1948年起任香港大学教授,又担任过教务长和副校长.从香港大学和中文大学培养出一批有世界影响的数学家,其中包括荣获菲尔兹奖的丘成桐,以及肖荫堂、陈绍远等著名数学家.

 

 

第二章                  名家生平简介

在这一章里,我们将向同学们介绍国内外几位数学名家们的生平,从中同学们可以领略

到他们是如何在数学王国里取得举世瞩目的成就?

§1高斯

高斯 (1777-1855),高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。

他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。

高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。                            

高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。

高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算123…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:11002 99398,……49525051而这样的组合有50组,所以答案很快的就可以求出是: 101×505050

1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星“智神星”方面也获得类似的成功。

由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

§2欧拉

欧拉(Leonhard Euler公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli1667-1748年)的精心指导。

欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为分析学的化身

欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。

欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文。19世纪伟大数学家高斯(Gauss1777-1855年)曾说:研究欧拉的著作永远是了解数学的最好方法。

欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学。由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了。

1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727517日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。

沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。

欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题。

欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759102日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:欧拉是我们的导师。欧拉充沛的精力保持到最后一刻,1783918日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:我死了,欧拉终于停止了生命和计算

欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的。[欧拉还创设了许多数学符号,例如π(1736年),i1777年),e1748年),sincos1748年),tg1753年),△x1755年),Σ(1755年),f(x)1734年)等。

§3波利亚

每个同学差不多都有过这样的经历:一道题,自己总也想不出解法,而老师却给出了一个绝妙的解法,这时你最希望知道的是“老师是怎么想出这个解法的?”如果这个解法不是很难时,“我自己完全可以想出,但为什么我没有想到呢?”

美籍匈牙利数学家乔治·波利亚(George Polya,1887~1985)对回答上述问题非常感兴趣,他先后写出了《怎样解题》、《数学的发现》和《数学与猜想》。这些书被译成很多国家的文字出版,成了世界范围内的数学教育名著。对数学教育产生了深刻的影响。正因为如此,当波利亚93岁高龄时,还被国际数学教育大会聘为名誉主席。

波利亚1887年出生在匈牙利,青年时期曾在布达佩斯、维也纳、哥廷根,巴黎等地攻读数学、物理和哲学,获博士学位。1914年在苏黎世著名的瑞士联邦理工学院任教。1940年移居美国,1942年起任美国斯坦福大学教授。他一生发表达200多篇论文和许多专著,他在数学的广阔领域内有精深的造诣,对实变函数、复变函数、概率论、纵使数学、数论,几何和微分方程等若干分支领域都做出了开创性的贡献,留下了以他的名字命名的术语和定理。他是法国科学院、美国全国科学院和匈牙利科学院的院士,不愧为一位杰出的数学家。

波利亚热心数学教育,十分重视培养学生思考问题分析问题的能力。他认为中学数学教育的根本宗旨是“教会年轻人思考”。教师要努力启发学生自己发现解法,从而从根本上提高学生的解题能力。

波利亚致力于解题的研究,为了回答“一个好的解法是如何想出来的”这个令人困惑的问题,他专门研究了解题的思维过程,并把研究所得写成《怎样解题》一书。这本书的核心是他分解解题的思维过程得到的一张《怎样解题》表。在这张包括“弄清问题”、“拟定计划”、“实现计划”和“回顾”四大步骤的解题全过程的解题表中,对第二步即“拟定计划”的分析是最为引人入胜的。他指出寻找解法实际上就是“找出已知数与未知数之间的联系,如果找不出直接联系,你可能不得不考虑辅助问题。最终得出一个求解计划。”他把寻找并发现解法的思维过程分解为五条建议和23个具有启发性的问题,它们就好比是寻找和发现解法的思维过程的“慢动作镜头”,使我们对解题的思维过程看得见,摸得着。

波利亚的《怎样解题》表的精髓是启发你去联想。联想什么?怎样联想?让我们看一看他在表中所提出的建议和启发性问题吧。“你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数!试指出一个具有相同未知数或相似未知数的熟悉的问题。这里有一个与你现在的问题有联系且早已解决的问题。你能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方式重新叙述它?......

波利亚说他在写这些东西时,脑子里重现了他过去在研究数学时解决问题的过程。实际上是他解决研究问题时的思维过程的总结。这正是数学家在研究数学教育,特别是研究解题教学时的优势所在,绝非“纸上谈兵”。仔细想一想,我们在解题时,为了找到解法,实际上也思考过表中的某些问题,只不过不自觉,没有意识到罢了。现在波利亚把这些问题和建议去寻找解法,这样,在解题的过程中,也使自己的思维受到良好的训练。久而久之,不仅提高了解题能力,而且养成了有益的思维习惯。而这是比任何具体的数学知识重要得多的东西。

波利亚的《怎样解题》被译成16种文字,仅平装本就销售100万册以上。著名数学家瓦尔登195222日在瑞士苏黎世大学的会议致词中说:“每个大学生,每个学者,特别是每个老师都应该读读这本引人入胜的书”。我想,波利亚关于怎样解题的思想对于广大中学生同样也是非常需要的和有益的。

波利亚强调发现,不仅仅是指发现解法,而且也包括数学的创新发现。他把阐述自己“对解题的理解、研究和讲授”的书取名为《数学的发现》,我想大概就是这个原因。他在这本书的第二卷中,还专门详细介绍了数学大师欧拉发现凸多面体的欧拉公式(顶点数—棱数+面数=2)的全过程,生动地再现了欧拉如何一步一步地进行归纳和猜想,最终得到上述公式的。也就是把处于发现过程中的数学,照原样提供给我们。展示教学家创新发现的思维活动过程,自然而生动地显示归纳和猜想在数学发现中的重要作用,这在教科书和一般的数学著作中是极少见到的,而这对于学习数学却是非常重要的。波利亚要求我们不仅要学习证明,而且要学习猜想。也就是不仅要培养和提高解题能力,而且要学习和培养创新能力。

“怎样解题表”就是《怎样解题》一书的精华,该表被波利亚排在该书的正文之前,并且在书中再三提到该表。实际上,该书就是“怎样解题表”的详细解释。波利亚的“怎样解题表”将解题过程分成了四个步骤,只要解题时按这四个步骤去做,必能成功。同学们如果能在平时的做题中不断实践和体会该表,必能很快就会发出和波利亚一样的感叹:“学数学是一种乐趣!”

怎样解题表

第一步:你必须弄清问题。

1.已知是什么?未知是什么?要确定未知数,条件是否充分?

2.画张图,将已知标上。

3.引入适当的符号。

4.把条件的各个部分分开。

第二步:找出已知与未知的联系。

1.你能否转化成一个相似的、熟悉的问题?

2.你能否用自己的语言重新叙述这个问题?

3.回到定义去。

4.你能否解决问题的一部分?

5.你是否利用了所有的条件?

第三步:写出你的想法。

1.勇敢地写出你的方法。

 

2.你能否说出你所写的每一步的理由?

第四步:回顾。

1.你能否一眼就看出结论?

2.你能否用别的方法导出这个结论?

3.你能否把这个题目或这种方法用于解决其他的问题?

 

 

§4华罗庚

华罗庚是中国现代数学家。19101112日生于江苏省金坛县,1985612日在

日本东京逝世。1924年初中毕业后,在上海中华职业学校学习不到一年,因家贫辍学,刻苦自修数学。1930年在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学工作,在杨武之指引下,开始了数论的研究。1934年成为中华教育文化基金会研究员。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。

1946年,应苏联科学院邀请去苏联访问三个月。同年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊利诺伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。

华罗庚善于用几句形象化的语言将深刻的道理说出来。这些语言简意深,富于哲理,令人难忘。早在SO年代,他就提出“天才在于积累,聪明在于勤奋”。 华罗庚虽然聪明过人,但从不提及自己的天分,而把比聪明重要得多的“勤奋”与“积累”作为成功的钥匙,反复教育年青人,要他们学数学做到“拳不离手,曲不离口”,经常锻炼自己。50年代中期,针对当时数学研究所有些青年,做出一些成果后,产生自满情绪,或在同一水平上不断写论文的倾问,华罗庚及时提出:“要有速度,还要有加速度。”所谓“速度”就是要出成果,所谓‘加速度“就是成果的质量要不断提高。“文化大革命”刚结束的,一些人,特别是青年人受到不良社会风气的影响,某些部门,急于求成,频繁地要求报成绩、评奖金等不符合科学规律的做法,导致了学风败坏。表现在粗制滥造,争名夺利,任意吹嘘。 1978年他在中国数学会成都会议上语重心长地提出:“早发表,晚评价。”后来又进一步提出:“努力在我,评价在人。”这实际上提出了科学发展及评价科学工作的客观规律,即科学工作要经过历史检验才能逐步确定其真实价值,这是不依赖人的主观意志为转移的客 观规律。“

华罗庚从不隐讳自己的弱点,只要能求得学问, 他宁肯暴露弱点。在他古稀之年去英国访问时,他把成语“不要班门弄斧”改成“弄斧必到班门”来鼓励自己。实际上,前一句话是要人隐讳缺点,不要暴露。华罗庚每到一个大学,是讲别人专长的东西,从而得到帮助呢,还是对别人不专长的,把讲学变成形式主义走过场?华罗庚选择前者,也就是“弄等必到班门”。早在50年代,华罗庚在《数论导引》的序言里就把搞数学比作下棋,号召大家找高手下,即与大数学家较量。中国象棋有个规则,那就是“观棋不语真君子,落子无悔大丈夫”。1981年,在淮南煤矿的一次演讲中,华罗庚指出:“观棋不语非君子,互相帮助;落子有悔大丈夫,改正缺点。”意思是当你见到别人搞的东西有毛病时,一定要说,另一方面,当你发现自己搞的东西有毛病时,一定要修正。这才是“君子”与“丈夫”。针对一些人遇到困难就退缩,缺乏坚持到底的精神,华罗庚在给金坛中学写的条幅中写道:“人说不到黄河心不死,我说到了黄河心更坚。”

华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等著名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。

华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都作出卓越贡献。

由于华罗庚的重大贡献,有许多用他的名字命名的定理、引理、不等式、算子与方法。他共发表专著与学术论文近三百篇。

华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。

 

 

 

§5陈省身

陈省1911年生于浙江嘉兴。因那年是辛亥年,所以号“辛生”,名字则出自中国的古训—“吾日三省吾身”。他的童年时代是在故乡度过的,江南水乡,地杰人灵,他自幼聪慧过人。

陈省身先生是国际著名数学家。1930年毕业于天津南开大学。1934年获清华大学理学硕士学位。1936年获德国汉堡大学理学博士学位。1938年为西南联合大学教授。1943年为美国普林斯顿高级研究院研究员。1946年为南京中央研究院数学研究所代所长。1949年为美国芝加哥大学教授。1960年至1979年为美国伯克利加州大学教授。1961年加入美国籍。1981年至1984年任美国伯克利数学研究所首任所长。1984年至1992年任天津南开数学研究所所长,1992年起为名誉所长。他是前中央研究院首届院士(1948),美国国家科学院院士(1961),第三世界科学院创始成员(1983),英国皇家学会国外会员(1985),意大利国家科学院外籍院士(1988),法国科学院外籍院士(1989)1994年当选为中国科学院首批外籍院士。

 陈省身先生是20世纪伟大的几何学家,在微分几何方面的成就尤为突出,是Euclid(欧几里得)Gauss(高斯)Riemann(黎曼)E.Cartan(嘉当)的继承者与开拓者。他发展了GaussBonnet(高斯一波尔)公式,被命名为“陈氏示性类(Chern Class)”,成为经典杰作。他建立微分纤维丛理论,其影响遍及数学的各个领域。创立复流形上的值分布理论,包括陈—Bott定理,影响及于代数数论。他为广义的积分几何奠定基础,获得基本运动学公式。他所引入的陈氏示性类与陈—Simons微分式,已深入到数学以外的其他领域,成为理论物理的重要工具。先后发表过数学论文158篇、《陈省身论文集》4卷以及《陈省身文选》等著作。曾荣获最高数学奖——沃尔夫奖,全美华人协会杰出成就奖,美国科学奖,美国数学会奖等。

 陈省身主要论著目录:

1.《微分几何的若干论题》,美国普林斯顿高级研究院1951年油印本。

2.《微分流形》,美国芝加哥大学1953年油印本。

3.《复流形》,美国芝加哥大学1956年版;巴西累西腓大学1959年版; 俄译本1961年版。

4.《整体几何和分析的研究》(编辑),美国数学协会1967年版。

5.《不具位势原理的复流形》,凡·诺斯特兰德1968年版;斯普林格出版社第二版。

6.《黎曼流形中的极小子流形》,美国堪萨斯大学1968年油印本。

7.《微分几何讲义》(合著),北京大学出版社1983年出版。

8.《陈省身论文选集》(14),斯普林格出版社1978年、1989年出版。

9.《整体微分几何的研究》(编辑),美国数学协会1988年版。

10.《陈省身文选——传记、通俗演讲及其他》,科学出版社1989年出版。 

§6吴文俊

吴文俊 中国科学院数学物理学部委员、中国科学院系统科学研究所研究员.拓扑学、中国数学史、数学机械化。

吴文俊于1919512日出生在上海一个知识分子家庭.父亲吴福国在交大前身的南洋公学毕业,长期在一家以出版医药卫生书籍为主的书店任编译,埋头工作,与世无争.家中关于“五四运动”时期的许多著作与历史书籍对少年吴文俊的思想有重要影响.吴文俊在初中时对数学并无偏爱,成绩也不突出.只是到了高中,由于授课教师的启迪,逐渐对数学及物理产生兴趣,特别是几何与力学.1936年中学毕业后,并没有专攻数学的想法,甚至家庭也对供他上大学有一定困难,只是因为当时学校设立三名奖学金,一名指定给吴,并指定报考交大数学系,才使他考入这所著名学府.

比起国内当时一些著名大学来,交大数学系成立较晚,教学内容也比较古老,数学偏重计算而少理论.他在大学一、二年级时听过初等数学(陈怀书讲,用林鹤一的书)、微积分(胡敦复讲)、高等微积分(汤彦颐讲)、复变函数论(同上)、微分方程(石法仁讲)等课程,用的都是英美教本,理论不多.吴文俊念到二年级时,对于数学失去了兴趣,甚至想辍学不念了.到三年级时,武崇林讲授代数与实变函数论,才使吴文俊对数学的兴趣发生新的转机.他对于现代数学尤其是实变函数论产生了浓厚的兴趣,在课下刻苦自学,反复阅读几种主要著作.当时求知欲旺盛,吸收力强,从而在数学方面打下坚实的基础.有了集合论及实变的深厚基础后,吴进而钻研点集拓扑的经典著作(如康托尔(Cantor)、豪斯道夫(Hausdorff)、舍恩夫利斯(Schnflies)、杨(WHYoung)等的名著)以及波兰著名期刊《数学基础》(Fundamenta Mathematica)上的论文.这刊物的前几卷他几乎每篇都读,以后重点选读.现在还保存着当时看过的论文摘要.然后又进而学习组合拓扑学经典著作,如塞费特(Seifert)、特莱尔费尔(Threlfall)、亚力山大洛夫-浩普夫(Alek-sandroff-Hopf)、维布仑(Veblen)等人的拓扑学.他高超的外文水平(特别是英文、德文)大大有助于他领会原著.只是毕业之后无法接触现代数学书刊,加上日常工作繁重,只得中断向现代数学的进军.他抽空以初等几何自娱,实属迫不得已.他曾保持一本数学日记,记载自已的想法及结果,不幸已经遗失.在大学一年级时,他发现一个用力学方法证明难度很大的帕斯卡(Pascal)定理,四年级时以60条帕斯卡线的种种关系作为他毕业论文的内容.虽然平面几何已较古老,但他对这门学科极熟悉,这对他以后机械化定理证明的研究仍起着重要作用.他在大学时,曾留学德国哥廷根的朱公谨(朱言钧)发表了不少译著,吴文俊几乎每篇必读,这对他的早期数学思想产生一定影响.三、四年级虽然他也听过范会国等讲授的各门分析课程(复变函数、微分方程、微分几何、变分法、积分方程)及武崇林讲授的数论群论,但数学基础主要靠自学.

1940年吴文俊从交大毕业,正值抗战时期,他因家庭经济问题,经朋友介绍,到租界里一家育英中学教书,同时还兼任教务员,做许多繁琐的日常事务性工作.这主要由于当时吴比较害羞,不擅长讲课,授课时数不足,不得不兼搞教务工作.194112月“珍珠港事件”后,日军进驻各租界,他失业半年,而后又到培真中学工作,在极其艰苦的条件下,勉强度过日伪的黑暗统治时期.他工作认真,也钻研教学,比如曾反复思考,换用多种方法讲授“负负得正”之类的内容.还要批改作业,占用大量时间及精力.在这五年半期间,竟找不到多少时间钻研数学,这对吴的成长不能不说是一大损失.

抗日战争胜利以后,他到上海临时大学任教.19464月,陈省身从美返国,在上海筹组中央研究院数学研究所.当时吴文俊并不认识陈省身,是经友人介绍前去拜访的.亲戚鼓励他说:陈先生是学者,只考虑学术,不考虑其他,不妨放胆直言.在一次谈话中,吴文俊直率向陈提出希望去数学所,陈省身当时未置可否,临别时说:“你的事我放在心上.”不久陈省身即通知吴文俊到数学所工作.19468月起,吴文俊在上海(岳阳路)数学所工作一年多,图书室作为工作地点.这一年陈省身着重于“训练新人”,有时一周讲12小时的课,讲授拓扑学.听讲的年轻人除吴文俊外,还有陈国才、张素诚、周毓麟等.陈省身还经常到各房间同年轻人交谈.

与陈省身的结识是吴文俊一生的转折点.他开始接触到当时方兴未艾的拓扑学,这使他大开眼界,使自己的研究方向由过去偏狭的古老学科转向当代新兴学科.在陈省身带动下,吴文俊很快地吸收了新理论,不久就进行独立研究.当时惠特尼(HWhitney)提出的示性类,有一个著名的对偶定理,惠特尼的证明极为复杂,且从来没有发表过.吴文俊独创新意,给出一个简单的证明,这是示性类头一个重要成果,现在已是经典的东西了.陈省身对此十分欣赏,把它推荐到普林斯顿大学出版的《数学年刊》(Annals ofMathematics)上发表.在数学荒疏多年的情况下,一年多时间之内就在以难懂著称的拓扑学的前沿取得如此成就,不能不说是吴文俊的天才和功力.

194711月,吴文俊考取中法交换生赴法留学.当时正是布尔巴基(Bourbaki)学派的鼎盛时期,也是法国拓扑学正在重新兴起的时代.吴文俊在这种优越的环境中迅速成长.他先进斯特拉斯堡(Strassbourg)大学,跟埃瑞斯曼(CEhresmann)学习.埃瑞斯曼是嘉当(ECartan)的学生,他的博士论文是关于格拉斯曼(Grassmann)流形的同调群的计算,这个工作对后来吴关于示性类的研究至关重要.同时,他还是纤维丛概念的创始人之一,他的一些思想对吴文俊后来的工作也有一定影响.在法国期间,吴文俊继续进行纤维空间及示性类的研究.在埃瑞斯曼的指导下,他完成了《论球丛空间结构的示性类》的学位论文,于1949年获得法国国家博士学位.这篇论文同瑞布(Reeb)的论文一起,在1952年以单行本出版,另外还发表了多篇关于概复结构及切触结构的论文.在斯特拉斯堡他结识了托姆(RThom)等人.他的一些结果发表后,引起广泛注意.由于他的某些结果与以前结果表面不同,而使浩普夫(HHopf)亲自来斯特拉斯堡澄清他们的工作.浩普夫同吴交谈后才搞清楚问题,非常赞赏吴的工作,并邀请吴去苏黎世讲学一周.在苏黎世他结识了当时在苏黎世访问的江泽涵.他的工作还受到了怀特海(JHCWhitehead)的注意.取得学位后,吴文俊到巴黎,在法国国家科学研究中心(CNRS)做研究,在H.嘉当的指导下工作.这时,H.嘉当举办著名的嘉当讨论班,这个讨论班对于拓扑学的发展有重要意义.与此同时,反映国际数学主要动向的布尔巴基讨论班也刚刚开始,当时参加人数还不多,一般二三十人.吴文俊参加这两个讨论班,并在讨论班上作过报告.当时嘉当致力于研究著名的斯廷洛德上同调运算,吴文俊从低维情形出发,已猜想到后来所谓的嘉当公式.嘉当在他的全集中,也把这一公式的发现归功于吴文俊.同时吴1950年发表的一篇论文,也预示了后来所谓的道尔德(Dold)流形.

19518月,吴文俊谢绝了法国师友的挽留,怀着热爱祖国的赤诚之心,回到祖国.他先在北京大学数学系任教授.在江泽涵的建议下,吴又于195210月到新成立的数学研究所任研究员.当时数学所在清华大学校园内,他和张素诚、孙以丰共同建立拓扑组,形成中国的拓扑学研究工作的一个中心.不久他结识陈丕和女士,并于1953年结婚.婚后生有三女一子:月明、星稀、云奇、天骄,现皆学有所成.当时国内政治学习及运动还不算太多,但总是占了不少时间及精力,家务琐事也使他有所分心.从1953年到1957年短短五年间,他还是做了大量研究工作.在这段日子里,他主要从事邦特里亚金(Л.С.Понтрягин)示性类的研究工作,力图得出类似于史梯费尔-惠特尼示性类的结果.但是邦特里亚金示性类要复杂得多,许多问题至今未能解决.他在五篇关于邦特里亚金示性类的论文中,所得许多结果,长期以来是最佳的.1956年,他作为中国代表团的一员,赴苏参加全苏第三次数学家大会,并做关于邦特里亚金示性类的报告,得到好评.邦特里亚金还邀请他到家中作客并进行讨论.

其后,吴文俊的工作重点从示性类的研究转向示嵌类的研究.他用统一的方法,系统地改进以往用不同的方法所得到的零散结果.由于他在拓扑学示性类及示嵌类的出色工作,他与华罗庚、钱学森一起分获1956年第一届自然科学奖的最高奖—一等奖,并于1957年增选为中国科学院数理化学部委员.1957年他应邀去波兰、民主德国、法国访问;在巴黎大学系统介绍示嵌类理论达两个月之久,听众中有海富里热(Haefliger)等人,吴对他们后来的嵌入方面的工作有着明显的影响.1958年,吴被邀请到国际数学家大会做分组报告(因故未能成行)

    1955年起,数学研究所拓扑组开始有新大学生来工作,他们在吴文俊的指导下,开始走上研究的道路.其中有李培信、岳景中、江嘉禾、熊金城及虞言林等.

1958年起,由于“反右”,理论研究已不能继续进行,拓扑学研究工作被迫中断.在“理论联系实际”的口号下,数学所的研究工作进行大幅度调整.吴文俊同一些年轻人开始对新领域—对策论进行探索.在短短的一两年中不仅引进了这门新学科,而且以其深厚的功力,做出值得称道的成果.1960年起,他担任中国科学技术大学数学系60级学生的主讲教师,开出三门课程:微积分、微分几何和代数几何,共七个学期,他深入浅出的教学内容使这届学生获益匪浅.

三年困难时期,科研工作部分得到恢复.1961年夏天,在颐和园召开龙王庙会议,讨论数学理论学科的研究工作的恢复问题.1962年起,吴文俊重新开始拓扑学的研究,特别着重于奇点理论.其后又结合教学对代数几何学进行研究,定义了具有奇点的代数簇的陈省身示性类,这大大领先于西方国家.1964年起的“社会主义教育运动”(四清)再一次使研究工作中断.19659月,他以普通工作队员的身份到安徽省六安县参加半年“四清”运动,回京后不久,“文化大革命”开始了.数学所大部分研究工作从此长期陷于停顿,吴文俊也不得不参加运动以及接受“批判”.他的住房也大大压缩了,六口之家挤在两小间屋子里,工作条件可想而知.但就在这种“文革”的困难时期中,他仍然抓紧时间从事科研工作,只是方向上有所变化.他在1966年注意到他的示嵌类的研究可用于印刷电路的布线问题,特别是他的方法完全是可以算法化的,而这种“可计算性”是与以前在布尔巴基影响下的纯理论的方向完全不同的.大约从这时开始,他完成了自己数学思想上一次根本性的改变.也就在同时,他还进行了仿生学的研究.1971年他到无线电一厂参加劳动.

1972年,科研工作开始部分恢复.同时中美数学家开始交流,特别是陈省身等华裔数学家回国,带来许多国际上的新信息.数学所拓扑组开始讨论由苏里汶(DSullivan)等人开创的有理同伦论,据此吴文俊提出了他的I*函子理论,其显著特点之一也是“可计算性”.大约同时,吴文俊的兴趣转向中国数学史.他用算法及可计算性的观点来分析中国古代数学,发现中国古代数学传统与由古希腊延续下来的近现代西方数学传统的重要区别;他对中国古算做了正本清源的分析,在许多方面提出了独到的见解.这两方面,是他在1975年到法国高等科学研究院访问时的主要报告题目.

1976年粉碎“四人帮”之后,科学研究开始走上正轨.年近花甲的吴文俊更加焕发出青春活力.他在中国古算研究的基础上,分析了西方笛卡尔(RDescartes)的思想,深入探讨希尔伯特(Hilbert)《几何基础》一书中隐藏的构造性思想,开拓机械化数学的崭新领域.1977年他在平面几何定理的机械化证明方面首先取得成功.1978年进一步发展成对微分几何的定理的机械化证明.这完全是中国人自己开拓的新的数学道路,产生了巨大的国际影响.到80年代,他不仅建立了数学机械化证明的基础,而且扩张成广泛的数学机械化纲领,解决了一系列理论及实际问题.

1979年以后,我国数学家的国际交往也日益频繁,吴文俊也多次出国.从1979年被邀请为普林斯顿高等研究所研究员起,几乎每年都出国访问或参加国际学术会议,对于在国外传播其数学成就起着重要作用.尤其是吴文俊机械化数学的思想与中国传统数学受到国际上的瞩目.1986年,他在国际数学家大会上作关于中国数学史的报告,引起广泛的兴趣.这样,在我国现代数学史上,初步形成了复兴中国数学的新趋势,中国人开创并领导了一个崭新的数学分支,中国数学不再只是沿袭他国的主题、问题与方法了,从而引起国际数学界对我国的数学研究工作的日益密切的注意.

1980年,在陈省身的倡议下,吴文俊积极参与“双微”会议的筹备及组织工作.从1980年到1985年,共举行六届“双微”会议,对于同国内外数学界的交流起着重要推动作用.

1983年,吴文俊当选为中国数学会理事长,他积极筹备了1985年在上海举行的中国数学会成立50周年纪念大会.到1987年任满.

1979年夏,吴文俊、关肇直、许国志等人筹建中国科学院系统科学研究所,1980年正式成立.吴文俊任副所长兼基础数学室室主任、学术委员会主任.1983年起任名誉所长.在职期间,对所的基本建设有着极大助益.1990年该所正式成立数学机械化研究中心,吴文俊担任主任.他领导的数学机械化研究小组和他组织并领导的讨论班,在这一新领域已进行了相当长时期的研究,并完成了大量为国际瞩目的研究成果.研究中心成立后,学术活动更为活跃.吴文俊满怀信心地要把系统科学研究所的数学机械化研究中心,发展成为国际交流的中心,吸引国内外同行为深入开展这一新领域的研究而共创业绩.由于他的成就,吴文俊于1990年荣获第三世界科学院数学大奖,次年当选为该院院士.

1980年,吴文俊加入中国共产党.1978198319881993年,他当选为政治协商会议全国委员会委员及常委.

吴文俊的数学研究博大精深,涉及面很广,包括代数拓扑学与微分拓扑学、代数几何学、微分几何学、对策论、中国数学史、数学机械化理论、应用数学等领域.这里简述其主要成就.

(1)代数拓扑学与微分拓扑学.

纤维丛及示性类理论,是现代数学最基本概念之一,对数学各个领域乃至数学物理(如杨-米尔斯[RMills]规范场论)有着广泛的应用.吴文俊最早的工作之一就是对惠特尼的丛乘积公式给出一个圆满的证明.到法国之后,在他的博士论文中,他定出各种不同示性类之间的种种关系,并得出4维可定向微分流形上具有概复结构的充分必要条件.这些工作主要是基于对格拉斯曼流形的细致研究.吴文俊运用当时发现不久的更强的拓扑工具—上同调运算,特别是斯汀洛德(Steenrod)平方Sq,由此得出惠特尼示性类只由维数为2k的类完全决定.上述公式还被应用于解决另外一大问题:微分流形的示性类的拓扑不变性,即与微分结构无关.吴文俊通过同调性质把示性类明显表出,这就是著名的“吴(文俊)公式”:设M是紧n维微分流形,令史梯费尔-惠特尼示性类W=SqV,其中V=1+V1++Vn由等式VX=SqX唯一决定,它对所有XH*(M)均成立.由这公式可以使史梯费尔-惠特尼示性类的计算成为例行公式,从而导致一系列应用,例如非定向流形的配边理论的标准流形(实射影空间及吴-道尔德流形)的完全决定.这最终使史梯费尔-惠特尼示性类理论成为拓扑学中最完美的一章.

吴文俊的下一目标是邦特里亚金示性类,而邦特里亚金示性类的问题要难得多.吴文俊研究时,只有邦特里亚金的一个简报(1942)及一篇论文(1947).邦特里亚金用的是同调,吴文俊在博士论文中,首先把它改造成上同调,并对其胞腔分解等作了一系列简化.其后运用类似邦特里亚金平方等上同调运算,先后证明模3及模4邦特里亚金示性类的拓扑不变性,并得出明显表示.其后引入另一类Φip,证明其拓扑不变性,由此推出某些邦特里亚金类的组合(p)的拓扑不变性.

实现或嵌入问题—示嵌类.几何学与拓扑学中最基本问题之一是实现或嵌入问题.初等几何学中的对象如曲线、曲面均置于欧氏空间中,往往通过坐标及方程来刻画.而拓扑学中的基本概念如流形或复形,都是抽象地或内蕴地定义的.是否可把它们放在欧氏空间中使我们产生具体的形象,成为子流形或子复形,这就是实现或嵌入问题.在吴文俊的工作之前,已有范·卡本(ERvanKampen)及惠特尼等人的部分结果.而吴文俊把以前表面上不相关连、方法上各异的成果统一成一个系统的理论.他主要的工具是考虑一空间的p重约化积,利用史密斯(PASmith)的周期变换理论定义上同调类Φi(p)(X),他的嵌入理论的基本定理是:

X能实现于RN中,则

Φi(p)(X)=0iN(p-1)

这定理包含以前所有结果为特例,而且不论是拓扑嵌入、半线性嵌入,还是微分嵌入均成立.由此可以推出一系列具体结果,某些结果也为沙比罗(Shapiro)独立得到.吴文俊于1957年又把结果扩充到处理同痕问题,特别是证明:

只须n1,所有n维微分流形在R2n+1中的微分嵌入均同痕.从而可知高维扭结不存在,这显示n=1n1有根本不同.这里值得一提的是:n重约化积的想法早在1953年构造非同伦型的拓扑不变量时就已得出,而且曾用于证明例如模3邦特里亚金示性类拓扑不变性,从此成为研究拓扑问题的有力工具.

1966年吴文俊为他的嵌入理论找到了实际应用,集成电路布线问题实际上就是一个线性图的平面嵌入问题.吴文俊运用示嵌类理论把问题归结为简单的模2方程的计算问题,他不仅可得出是否可嵌入的判据,而且可以指示如何更好地布线.他的方法完全可以计算,可以上计算机,效率远远超过同类算法.

I*函子.在苏里汶等人工作基础上,1975吴首先提出一种新函子—I*函子.它比已知的经典函子,如同调函子H、同伦函子π、广义上同调K函子等,更易于计算及使用.对于满足一定条件的有限型单纯复形,可以定义一个反对称微分分次代数,简记为DGA.对每DGAA,可唯一确定一个极小模型MinA,即I*.吴使这些定义范畴化,并指出它们的可计算性.I*函子不仅可以得出H*及π的有理部分信息,而且可以得出一些复杂的关系.对于由X或由XY生成的空间,如XYX/YXY构成的纤维方等等,用H*(X)H*(Y)得不出H*(XY)的完全信息,π也是如此.但对I*函子这些公式均可通过明显公式得出.吴文俊通过大量计算,处理纤维方、齐性空间等典型,将这些关系写出,并特别强调其可计算性.在1981年上海“双微”会议上,他还对于著名的德·拉姆(de Rham)定理作了构造的解释.1987年,吴的工作总结在斯普林格出版社“数学讲义丛书”LN1264中,这样I*成为构造性代数拓扑学的关键部分.

(2)中国数学史.

《海岛算经》中证明的复原.刘徽于公元263年作《九章算术注》中,把原见于《周髀算经》中的测日高的方法,扩张为一般的测望之学—重差术,附于勾股章之后.唐代把重差这部分与九章分离,改称《海岛算经》.原作有注有图,后失传.现存《海岛算经》只剩九题.第一题为望海岛,大意为从相距一定距离两座已知高度的表望远处海岛的高峰,从两表各向后退到一定距离即可看到岛峰,求岛高及与表的距离.对此刘徽得出两个基本公式

其中相多表示从两表后退距离之差.

吴文俊研究后人的各种补证之后,发现除了杨辉的论证及李俨对杨辉论证解释之外,并不符合中国古代几何学的原意.尤其是西算传入以后,用西方数学中添加平行线或代数方法甚至三角函数来证明,是完全错误的.吴文俊对于《海岛算经》中的公式的证明,作了合理的复原.吴文俊认为,重差理论实来源于“周髀”,其证明基于相似勾股形的命题或与之等价的出入相补原理,从而指出中国有自己独立的度量几何学的理论,完全借助于西方欧几里得体系是很难解释通的.

出入相补原理的提出.吴文俊在研究包括《海岛算经》在内的刘徽著作的基础上,把刘徽常用的方法概括为“出入相补原理”.他指出,这是“我国古代几何学中面积体积理论的结晶”.吴文俊进一步指明,中国数学的体积求法,除了依据出入相补原理之外,另外还要提出刘徽定理.吴文俊认为,自己的中国数学史的工作,是最重要的创造性工作;并曾表示愿把证明重差术的图,刻在自己的墓碑上.

(3)数学机械化纲领.

吴文俊近十多年的成就,往往因早期工作被狭窄地认为只是机器证明;而实际上,这只不过是一个使数学机械化的宏伟纲领的开端.

数学机械化的思想来源于中国古算,并从笛卡儿的著作中找到根据,提出一个把任意问题的解决归结为解方程的方案:

这里PiP均为多项式.现在知道,这里每一步未必行得通,即使行得通是否现实可行也是问题.吴文俊的贡献在于:

①提出一套完整的算法,使得代数方程组通过机械步骤消元变成一个代数方程.

②解代数方程组可扩大为带微分的代数方程组,从而大大扩张研究问题的范围.

③“吴方法”不仅能证明定理,而且能自动发现定理.

④与许多以前的原则可行的证明定理的方法相比较,“吴方法”是现实可行的.

⑤“吴方法”能同时得出全部解,这与其他算法有很大区别.吴文俊的各项独创性研究工作,使他在国内外产生了广泛的影响,享有很高的声誉.

他对拓扑学的各项研究早已成为经典成果,“吴公式”、“吴类”已成为许多论文的题目、研究工具及研究对象,并且是许多优秀结果的出发点.近年来,他对于中国数学史的研究及定理机器证明的数学机械化纲领,正在急剧地扩大影响,真正成为一个独具中国特色的构造性的、可机械化的数学运动.单是定理机器证明就已获得许多热情的赞扬.莫尔(Moore)认为,在吴的工作之前,机械化的几何定理证明处于黑暗时期,而吴的工作给整个领域带来光明.美国定理自动证明的权威人士沃斯(Wos)认为,吴的证明路线是处理几何问题的最强有力的方法,吴的贡献将永载史册.而这些只不过是对吴机械化数学方案的早期工作的评价,而他的整个的机械化数学方案的实现,才刚开始.

陈省身称吴文俊“是一位杰出的数学家,他的工作表现出丰富的想象力及独创性.他从事数学教研工作,数十年如一日,贡献卓著……”这是对吴的工作的确切的评价.70年代以后,吴文俊对中国文化有了更深刻的认识,他通过自己的科研工作,真正切实地初步实现了复兴中国文化优秀内核的理想.吴文俊,作为一位数学家,在自己的工作领域里,最终找到了发扬爱国主义精神、弘扬中国传统文化的正确道路.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第三章  罗素悖论与第三次数学危机

 

§1历史上的数学危机

1、什么是数学危机

为了讲清楚第三次数学危机的来龙去脉,我们首先要说明什么是数学危机。一般来讲,危机是一种激化的、非解决不可的矛盾。从哲学上来看,矛盾是无处不在的、不可避免的,即便以确定无疑著称的数学也不例外。

数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。

矛盾的消除,危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。

人类最早认识的是自然数。从引进零及负数就经历过斗争:要么引进这些数,要么大量的数的减法就行不通;同样,引进分数使乘法有了逆运算—除法,否则许多实际问题也不能解决。但是接着又出现了这样的问题,是否所有的量都能用有理数来表示?于是发现无理数就导致了第一次数学危机,而危机的解决也就促使逻辑的发展和几何学的体系化。

方程的解导致了虚数的出现,虚数从一开始就被认为是“不实的”。可是这种不实的数却能解决实数所不能解决的问题,从而为自己争得存在的权利。

几何学的发展从欧几里得几何的一统天下发展到各种非欧几何学也是如此。在十九世纪发现了许多用传统方法不能解决的问题,如五次及五次以上代数方程不能通过加、减、乘、除、乘方、开方求出根来;古希腊几何三大问题,即三等分任意角、倍立方体、化圆为方不能通过圆规、直尺作图来解决等等。

这些否定的结果表明了传统方法的局限性,也反映了人类认识的深入。这种发现给这些学科带来极大的冲击,几乎完全改变了它们的方向。比如说,代数学从此以后向抽象代数学方面发展,而求解方程的根变成了分析及计算数学的课题。在第三次数学危机中,这种情况也多次出现,尤其是包含整数算术在内的形式系统的不完全性、许多问题的不可判定性都大大提高了人们的认识,也促进了数理逻辑的大发展。

这种矛盾、危机引起的发展,改变面貌,甚至引起革命,在数学发展历史上是屡见不鲜的。第二次数学危机是由无穷小量的矛盾引起的,它反映了数学内部的有限与无穷的矛盾。数学中也一直贯穿着计算方法、分析方法在应用与概念上清楚及逻辑上严格的矛盾。在这方面,比较注意实用的数学家盲目应用。而比较注意严密的数学家及哲学家则提出批评。只有这两方面取得协调一致后,矛盾才能解决。后来算符演算及δ函数也重复了这个过程,开始是形式演算、任意应用,直到施瓦尔兹才奠定广义函数论的严整系统。

对于第三次数学危机,有人认为只是数学基础的危机,与数学无关。这种看法是片面的。诚然,问题涉及数理逻辑和集合论,但它一开始就牵涉到无穷集合,而现代数学如果脱离无穷集合就可以说寸步难行。因为如果只考虑有限集合或至多是可数的集合,那绝大部分数学将不复存在。而且即便这些有限数学的内容,也有许多问题要涉及无穷的方法,比如解决数论中的许多问题都要用解析方法。由此看来,第三次数学危机是一次深刻的数学危机。

2、第一次数学危机

从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。这个学派兴旺的时期为公元前500年左右,它是一个唯心主义流派。他们重视自然及社会中不变因素的研究,把几何、算术、天文学、音乐称为“四艺”,在其中追求宇宙的和谐及规律性。他们认为“万物皆数”,认为数学的知识是可靠的、准确的,而且可以应用于现实的世界。数学的知识是由于纯粹的思维而获得,并不需要观察、直觉及日常经验。

毕达哥拉斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达,也就是勾长或股长与弦长是不可通约的。这样一来,就否定了毕达哥拉斯学派的信条:宇宙间的一切现象都能归结为整数或整数之比。

不可通约性的发现引起第一次数学危机。有人说,这种性质是希帕索斯约在公元前400年发现的,为此,他的同伴把他抛进大海。不过更有可能是毕达哥拉斯已经知道这种事实,而希帕索斯因泄密而被处死。不管怎样,这个发现对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之数却可以由几何量表示出来。整数的尊崇地位受到挑战,于是几何学开始在希腊数学中占有特殊地位。

同时这也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何学体系,这不能不说是数学思想上一次巨大革命,这也是第一次数学危机的自然产物。

回顾以前的各种数学,无非都是“算”,也就是提供算法。即使在古希腊,数学也是从实际出发,应用到实际问题中去的。比如泰勒斯预测日食,利用影子距离计算金字塔高度,测量船只离岸距离等等,都是属于计算技术范围的。至于埃及、巴比伦、中国、印度等国的数学,并没有经历过这样的危机和革命,所以也就一直停留在“算学”阶段。而希腊数学则走向了完全不同的道路,形成了欧几里得《几何原本》的公理体系与亚里士多德的逻辑体系。

3、第一次数学危机的产物—古典逻辑与欧氏几何学

亚里士多德的方法论对于数学方法的影响是巨大的,他指出了正确的定义原理。亚里士多德继承自己老师柏拉图的观念,把定义与存在区分,由某些属性来定义的东西可能未必存在(如正九面体)。另外,定义必须用已存在的定义过的东西来定义,所以必定有些最原始的定义,如点、直线等。而证明存在的方法需要规定和限制。

亚里士多德还指出公理的必要性,因为这是演绎推理的出发点。他区别了公理和公设,认为公理是一切科学所公有的真理,而公设则只是某一门学科特有的最基本的原理。他把逻辑规律(矛盾律、排中律等)也列为公理。

亚里士多德对逻辑推理过程进行深入研究,得出三段论法,并把它表达成一个公理系统,这是最早的公理系统。他关于逻辑的研究不仅使逻辑形成一个独立学科,而且对数学证明的发展也有良好的影响。

亚里士多德对于离散与连续的矛盾有一定阐述。对于潜在的无穷()和实在的无穷()加以区别。他认为正整数是潜在无穷的,因为任何整数加上1以后总能得到一个新的数。但是他认为所谓“无穷集合”是不存在的。他认为空间是潜在无穷的,时间在延长上是潜在无穷的,在细分上也是潜在无穷的。

欧几里得的《几何原本》对数学发展的作用无须在此多谈。不过应该指出,欧几里得的贡献在于他有史以来第一次总结了以往希腊人的数学知识,构成一个标准化的演绎体系。这对数学乃至哲学、自然科学的影响一直延续到十九世纪。牛顿的《自然哲学的数学原理》和斯宾诺莎的《伦理学》等都采用了欧几里得《几何原本》的体例。

欧几里得的平面几何学为《几何原本》的最初四篇与第六篇。其中有七个原始定义,五个公理和五个公设。他规定了存在的证明依赖于构造。

《几何原本》在西方世界成为仅次于《圣经》而流传最广的书籍。它一直是几何学的标准著作。但是它还存在许多缺点并不断受到批评,比如对于点、线、面的定义是不严格的:“点是没有部分的对象”,“线是没有宽度的长度(线指曲线)”,“面是只有长度和宽度的对象”。显然,这些定义是不能起逻辑推理的作用。特别是直线、平面的定义更是从直观来解释的(“直线是同其中各点看齐的线”)

另外,他的公理五是“整体大于部分”,没有涉及无穷量的问题。在他的证明中,原来的公理也不够用,须加上新的公理。特别是平行公设是否可由其他公理、公设推出更是人所瞩目的问题。尽管如此,近代数学的体系特点在其中已经基本上形成了。

4、非欧几何学的诞生

欧几里得的《几何原本》是第一次数学危机的产物。尽管它有种种缺点和毛病,毕竟两千多年来一直是大家公认的典范。尤其是许多哲学家,把欧几里得几何学摆在绝对几何学的地位。十八世纪时,大部分人都认为欧几里得几何是物质空间中图形性质的正确理想化。特别是康德认为关于空间的原理是先验综合判断,物质世界必然是欧几里得式的,欧几里得几何是唯一的、必然的、完美的。

既然是完美的,大家希望公理、公设简单明白、直截了当。其他的公理和公设都满足了上面的这个条件,唯独平行公设不够简明,象是一条定理。

欧几里得的平行公设是:每当一条直线与另外两条直线相交,在它一侧做成的两个同侧内角的和小于两直角时,这另外两条直线就在同侧内角和小于两直角的那一侧相交。

在《几何原本》中,证明前28个命题并没有用到这个公设,这很自然引起人们考虑:这条啰哩啰嗦的公设是否可由其他的公理和公设推出,也就是说,平行公设可能是多余的。

之后的二千多年,许许多多人曾试图证明这点,有些人开始以为成功了,但是经过仔细检查发现:所有的证明都使用了一些其他的假设,而这些假设又可以从平行公设推出来,所以他们只不过得到一些和平行公设等价的命题罢了。

到了十八世纪,有人开始想用反证法来证明,即假设平行公设不成立,企图由此得出矛盾。他们得出了一些推论,比如“有两条线在无穷远点处相交,而在交点处这两条线有公垂线”等等。在他们看来,这些结论不合情理,因此不可能真实。但是这些推论的含义不清楚,也很难说是导出矛盾,所以不能说由此证明了平行公设。

从旧的欧几里得几何观念到新几何观念的确立,需要在某种程度上解放思想。

首先,要能从二千年来证明平行公设的失败过程中看出这个证明是办不到的事,并且这种不可能性是可以加以证实的;其次,要选取与平行公设相矛盾的其他公设,也能建立逻辑上没有矛盾的几何。这主要是罗巴切夫斯基的开创性工作。

要认识到欧几里得几何不一定是物质空间的几何学,欧几里得几何学只是许多可能的几何学中的一种。而几何学要从由直觉、经验来检验的空间科学要变成一门纯粹数学,也就是说,它的存在性只由无矛盾性来决定。虽说象兰伯特等人已有这些思想苗头,但是真正把几何学变成这样一门纯粹数学的是希尔伯特。

这个过程是漫长的,其中最主要的一步是罗巴切夫斯基和波耶分别独立地创立非欧几何学,尤其是它们所考虑的无矛盾性是历史上的独创。后人把罗氏几何的无矛盾性隐含地变成欧氏几何无矛盾性的问题。这种利用“模型”和证明“相对无矛盾性”的思想一直贯穿到以后的数学基础的研究中。而且这种把非欧几何归结到大家一贯相信的欧氏几何,也使得大家在接受非欧几何方面起到重要作用。

应该指出,非欧几何为广大数学界接受还是经过几番艰苦斗争的。首先要证明第五公设的否定并不会导致矛盾,只有这样才能说新几何学成立,才能说明第五公设独立于别的公理公设,这是一个起码的要求。

当时证明的方法是证明“相对无矛盾性”。因为当时大家都承认欧几里得几何学没有矛盾,如果能把非欧几何学用欧几里得几何学来解释而且解释得通,也就变得没有矛盾。而这就要把非欧几何中的点、直线、平面、角、平行等翻译成欧几里得几何学中相应的东西,公理和定理也可用相应欧几里得几何学的公理和定理来解释,这种解释叫做非欧几何学的欧氏模型。

对于罗巴切夫斯基几何学,最著名的欧氏模型有意大利数学家贝特拉米于1869年提出的常负曲率曲面模型;德国数学家克莱因于1871年提出的射影平面模型和彭加勒在1882年提出的用自守函数解释的单位圆内部模型。这些模型的确证实了非欧几何的相对无矛盾性,而且有的可以推广到更一般非欧几何,即黎曼创立的椭圆几何学,另外还可以推广到高维空间上。

因此,从十九世纪六十年代末到八十年代初,大部分数学家接受了非欧几何学。尽管有的人还坚持欧几里得几何学的独特性,但是许多人明确指出非欧几何学和欧氏几何学平起平坐的时代已经到来。当然也有少数顽固派,如数理逻辑的缔造者弗雷格,至死不肯承认非欧几何学,不过这已无关大局了。

非欧几何学的创建对数学的震动很大。数学家开始关心几何学的基础问题,从十九世纪八十年代起,几何学的公理化成为大家关注的目标,并由此产生了希尔伯特的新公理化运动。

5、第二次数学危机

早在古代,人们就对长度、面积、体积的度量问题感兴趣。古希腊的欧多克斯引入量的观念来考虑连续变动的东西,并完全依据几何来严格处理连续量。这造成数与量的长期脱离。古希腊的数学中除了整数之外,并没有无理数的概念,连有理数的运算也没有,可是却有量的比例。他们对于连续与离散的关系很有兴趣,尤其是芝诺提出的四个著名的悖论:

第一个悖论是说运动不存在,理由是运动物体到达目的地之前必须到达半路,而到达半路之前又必须到达半路的半路……如此下去,它必须通过无限多个点,这在有限长时间之内是无法办到的。

第二个悖论是跑得很快的阿希里赶不上在他前面的乌龟。因为乌龟在他前面时,他必须首先到达乌龟的起点,然后用第一个悖论的逻辑,乌龟者在他的前面。这两个悖论是反对空间、时间无限可分的观点的。

而第三、第四悖论是反对空间、时间由不可分的间隔组成。第三个悖论是说“飞矢不动”,因为在某一时问间隔,飞矢总是在某个空间间隔中确定的位置上,因而是静止的。第四个悖论是游行队伍悖论,内容大体相似。这说明希腊人已经看到无穷小与“很小很小”的矛盾。当然他们无法解决这些矛盾。

希腊人虽然没有明确的极限概念,但他们在处理面积体积的问题时,却有严格的逼近步骤,这就是所谓“穷竭法”。它依靠间接的证明方法,证明了许多重要而难证的定理。

到了十六、十七世纪,除了求曲线长度和曲线所包围的面积等类问题外,还产生了许多新问题,如求速度、求切线,以及求极大、极小值等问题。经过许多人多年的努力,终于在十七世纪晚期,形成了无穷小演算—微积分这门学科,这也就是数学分析的开端。

牛顿和莱布尼兹被公认为微积分的奠基者。他们的功绩主要在于:1,把各种问题的解法统一成一种方法,微分法和积分法;2,有明确的计算微分法的步骤;3.微分法和积分法互为逆运算。

由于运算的完整性和应用范围的广泛性,使微积分成为解决问题的重要工具。同时关于微积分基础的问题也越来越严重。以求速度为例,瞬时速度是Δs/Δt当Δt趋向于零时的值。Δt是零、是很小的量,还是什么东西,这个无穷小量究竟是不是零。这引起了极大的争论,从而引发了第二次数学危机。

十八世纪的数学家成功地用微积分解决了许多实际问题,因此有些人就对这些基础问题的讨论不感兴趣。如达朗贝尔就说,现在是“把房子盖得更高些,而不是把基础打得更加牢固”。更有许多人认为所谓的严密化就是烦琐。

但也因此,微积分的基础问题一直受到一些人的批判和攻击,其中最有名的是贝克莱主教在1734年的攻击。

十八世纪的数学思想的确是不严密的、直观的、强调形式的计算,而不管基础的可靠与否,其中特别是:没有清楚的无穷小概念,因此导数、微分、积分等概念不清楚;对无穷大的概念也不清楚;发散级数求和的任意性;符号使用的不严格性;不考虑连续性就进行微分,不考虑导数及积分的存在性以及可否展成幂级数等等。

一直到十九世纪二十年代,一些数学家才开始比较关注于微积分的严格基础。它们从波尔查诺、阿贝尔、柯西、狄里克莱等人的工作开始,最终由威尔斯特拉斯、戴德金和康托尔彻底完成,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。

波尔查诺不承认无穷小数和无穷大数的存在,而且给出了连续性的正确定义。柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,并定义了导数和积分;阿贝尔指出要严格限制滥用级数展开及求和;狄里克莱给出了函数的现代定义。

在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的ε - δ的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。

十九世纪七十年代初,威尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析终于建立在实数理论的严格基础之上了。

同时,威尔斯特拉斯给出一个处处不可微的连续函数的例子。这个发现以及后来许多病态函数的例子,充分说明了直观及几何的思考不可靠,而必须诉诸严格的概念及推理。由此,第二次数学危机使数学更深入地探讨数学分析的基础—实数论的问题。这不仅导致集合论的诞生,并且由此把数学分析的无矛盾性问题归结为实数论的无矛盾性问题,而这正是二十世纪数学基础中的首要问题。

自相矛盾的悖论,是数学史上一直困扰着数学家的难题之一。20世纪英国著名哲学家、数学家罗素曾经提出过一个著名的悖论—“理发师难题”,其内容如下:

西班牙的塞维利亚有一个理发师,这位理发师有一条极为特殊的规定:他只给那些“不给自己刮胡子”的人刮胡子。

理发师这个拗口的规定,对于除他自己以外的别人,并没有什么难理解的地方。但是回到他自己这里,问题就麻烦了。如果这个理发师不给自己刮胡子,那么按照规定,他就应该给自己刮胡子;可是他给自己刮胡子的话,按照规定他又不应该给自己刮胡子。因此,这位理发师无论是否给自己刮脸,都不符合自己的那条规定。这真是令人哭笑不得的结果。

罗素还提出过与“理发师难题”相似的几个悖论,数学上将这些悖论统称为“罗素悖论”或者“集合论悖论”。为什么又叫“集合论悖论”呢?因为“罗素悖论”都可以用集合论中的数学语言来描述,归结成一种说法就是:

在某一非空全集中,有这样一个确定的集合,这个集合中“只有不属于这个集合的元素”。

那么,全集中的某一个指定元素,和这个确定集合之间是什么关系呢?不难分析,如果这个元素包含于这个集合的话,那么根据这个集合的定义,这个元素就应该是“不属于这个集合”的元素;可如果这个元素“不属于这个集合”,那么根据这个集合的定义,这个元素就应该在这个集合中,即包含于这个集合。这就是说,全集中的每一个元素,与这个确定集合之间都不存在确定的包含关系,这无疑是讲不通的。

自从康托尔创立了数学领域中的“集合论”,用集合论中的观点来诠释各个数学概念之间的逻辑关系,真可谓是“天衣无缝”。因此集合论被誉为“数学大厦的基石”。然而“罗素悖论”的发现,证明了集合论中竟然存在自相矛盾的悖论,这足以暴露集合论本身的缺陷。

“罗素悖论”在20世纪数学理论中引起了轩然大波。“数学大厦的基石”竟然出现了明显的“裂缝”,那么人类耗费数千年心血建立起来的“数学殿堂”,会不会倒塌呢?一时间,数学界众说纷纭,悲观者甚至因此把当代数学比作“建立在沙滩上的庞然大物”。这就是数学史上著名的“第三次数学危机”。

 

§2第三次数学危机产生的背景(上)

第三次数学危机产生于十九世纪末和二十世纪初,当时正是数学空前兴旺发达的时期。首先是逻辑的数学化,促使了数理逻辑这门学科诞生。

十九世纪七十年代康托尔创立的集合论是现代数学的基础,也是产生危机的直接来源。十九世纪末,戴德金及皮亚诺对算术及实数理论进行公理化,推动了公理化运动。而公理化运动的最大成就则是希尔伯特在1899年对于初等几何的公理化。

公理化方法是现代数学最重要的方法之一,对于数学基础和数理逻辑的研究也有影响。当时也是现代数学一些新分支兴起的时期,如抽象代数学、点集拓扑学和代数拓扑学、泛函分析、测度与积分理论等学科。这些学科的发展一直与数学基础及数理逻辑的发展有着密切的关系。数学的更新与发展也对数学哲学有许多新的探讨,数学的陈腐哲学观念在当时已经几乎一扫而空了。

1、数学符号化的扩充:数理逻辑的兴起

数学的主要内容是计算和证明。在十七世纪,算术因符号化促使了代数学的产生,代数使计算变得精确和方便,也使计算方法系统化。费尔马和笛卡儿的解析几何把几何学代数化,大大扩展了几何的领域,而且使得少数天才的推理变成机械化的步骤。这反映了代数学作为普遍科学方法的效力,于是笛卡儿尝试也把逻辑代数化。与笛卡儿同时代的英国哲学家霍布斯也认为推理带有计算性质,不过他并没有系统地发展这种思想。

现在公认的数理逻辑创始人是莱布尼兹。他的目的是选出一种“通用代数”,其中把一切推理都化归为计算。实际上这正是数理逻辑的总纲领。他希望建立一套普遍的符号语言,其中的符号是表义的,这样就可以象数字一样进行演算,他的确将某些命题形式表达为符号形式,但他的工作只是一个开头,大部分没有发表,因此影响不大。

真正使逻辑代数化的是英国数学家布尔,他在1847年出版了《逻辑的数学分析》,给出了现代所谓的“布尔代数”的原型。布尔确信符号化会使逻辑变得严密。他的对象是事物的类,1表示全类,0表示空类;xy表示xy的共同分子所组成的类,运算是逻辑乘法;xy表示xy两类所合成的类,运算是逻辑加法。

所以逻辑命题可以表示如下:凡xy可以表示成x(1y)0;没有xy可以表示成xy0。它还可以表示矛盾律x(1x)0;排中律x(1x)1

布尔看出类的演算也可解释为命题的演算。当xy不是类而是命题,则x1表示的是命题x为真,x0表示命题x为假,1x表示x的否定等等。显然布尔的演算构成一个代数系统,遵守着某些规律,这就是布尔代数。特别是它遵从德·莫尔根定律。

美国哲学家、数学家小皮尔斯推进了命题演算,他区别了命题和命题函数。一个命题总是真的或假的,而一个命题函数包含着变元,随着变元值选取的不同,它可以是真也可以是假。皮尔斯还引进了两个变元的命题函数以及量词和谓词的演算。

对现代数理逻辑贡献最大的是德国耶拿大学教授、数学家弗雷格。弗雷格在1879年出版的《概念文字》一书中不仅完备地发展了命题演算,而且引进了量词概念以及实质蕴涵的概念,他还给出一个一阶谓词演算的公理系统,这可以说是历史上第一个符号逻辑的公理系统。因此在这本只有88页的小册子中,包含着现代数理逻辑的一个颇为完备的基础。

1884年,弗雷格的《算术基础》出版,后来又扩展成《算术的基本规律》。不过由于他的符号系统烦琐复杂,从而限制了它的普及,因此在十九世纪时,他的著作流传不广。后来由于罗素的独立工作,才使得弗雷格的工作受到重视。

用符号语言对数学进行公理化的是意大利数学家皮亚诺,他在1889年用拉丁文写了一本小册子《用新方法陈述的算术原理》。在这之前,皮亚诺已经把布尔和施罗德的逻辑用在数学研究上,并且引进了一系列对于他前人工作的更新。例如对逻辑运算和数学运算使用不同的符号,区别范畴命题和条件命题,这引导他得出量词理论。

这些改进都是对于布尔和施罗德理论的改进,而不是对弗雷格理论的改进,因为当时皮亚诺还不知道弗雷格的工作。在《算术原理》中,他在引进逻辑概念相公式之后,开始用符号的记法来重写算术,在这本书中他讨论了分数、实数、甚至极限和点集论中的概念。

皮亚诺引进最原始的算术概念是“数”“1”“后继”和“等于”,并且陈述了关于这些概念的九条公理。今天我们认为其中公理2345都是讨论恒等的,应该属于逻辑公理,所以就剩下了五条公理。这就是现在众所周知的皮亚诺公理。最后一条公理即公理9,就是所谓数学归纳法原理,他用类的词句来表述,其中包含一个类变元。皮亚诺承认他的公理化来自戴德金。

1开始,皮亚诺用x1来表示后继函数。然后作为定义引进了加法和乘法。这些定义是递归的定义。虽然在他的系统中,皮亚诺没有象戴德金那样有力的定理可资利用,但皮亚诺并没有公开地宣称这些定义可以去掉。

这本书的逻辑部分还列出命题演算的公式,类演算的公式,还有一部分量词的理论。皮亚诺的符号要比布尔和施罗德的符号高明得多,标志着向近代逻辑的重要转变。他还对于命题的演算和类演算做了某些区别。这就是我们现在的两种不同演算,而不是同一种演算的两种不同解释。它的普遍量词记号是新的,而且是便利的。

不过书里还是存在缺点,如公式只是列出来的,而不是推导出来的;因为没有给出推导规则,皮亚诺引进了代入规则的概念,但是也没有给出任何规则;更严重的是他没有给出任何分离规则,结果尽管他的系统有许多优点,但他没有可供使用的逻辑。一直到后来,他才在一系列文章,特别是1895年发表的《数学论集》中,对这些逻辑公式进行了证明。然而他这些证明还是缺少推演规则,在这方面他受到了弗雷格的批评。后来皮亚诺尽力想比弗雷格的《概念文字》有更多的内容,但是他做得并不够。不过他的这些著作在数学界仍有很大影响,得到广泛的传播。

2.命题演算

逻辑演算是数理逻辑的基础,命题演算是逻辑演算最基本的组成部分。命题演算研究命题之间的关系,比如简单命题和复杂命题之间的关系,简单命题如何构成复杂命题,由简单命题的真假如何推出复杂命题的真假等等。对于具体命题,我们不难通过机械运算来达到我们的目的,这就是命题的算术。

对于命题演算最早是由美国逻辑学家波斯特在1921年给出证明的,他的证明方法是把命题化为标准形式—合取范式。教科书中常见的证明是匈牙利数学家卡尔马给出的。除了这些构造性证明之外,还有用布尔代数的非构造性证明。

3、一阶谓词演算

在命题演算中,形式化的对象及演算的对象都是语句。但是,在数学乃至一般推理过程中,许多常见的逻辑推理并不能建立在命题演算的基础上。例如:1.张三的每位朋友都是李四的朋友,王五不是李四的朋友,所以王五不是张三的朋友。因此,我们必须深入到语句的内部,也就是要把语句分解为主语和谓语。

谓词演算要比命题演算范围宽广得多,这由变元也可以反映出来。命题演算的变元只是语句或命题,而谓词演算的变元有三类:个体变元、命题变元、谓词变元。由于谓词演算中有全称量词和存在量词,在这些量词后面的变化称为约束变元,其他变元称为自由变元。最简单的谓词演算是狭义谓词演算,现在通称一阶谓词演算。

谓词演算中的普遍有效公式与命题演算中的重言式还是有差别的。我们有行之有效的具体方法来判定一个公式是不是重言式。这种方法每一步都有明确的规定,并且可以在有限步内完成,这种方法我们称为能行的。但是在谓词演算中,并没有一种能行的方法来判定任何一个公式是否普遍有效的。这就需要寻找一种能行的方法来判定某个具体公式或一类公式是否普遍有效,这就是所谓判定问题。它是数理逻辑中最主要的问题之一。

一阶谓词演算的普遍有效公式也有一个公理系统。另外,同样也有代入规则及推理规则。另外,还有约束变元改字规则等变形规则。在谓词演算中也可以将每一个公式通过变形规则化为标准形式。其中最常用的是所谓前束范式,也就是公式中所有的量词都放在最前面,而且还可以把前束范式进一步化成斯科兰路范式,它不但具有前束范式的形状,而且每一个存在量词都在所有全称量词之前。

利用范式可以解决许多问题,最重要的是哥德尔证明的一阶谓词演算的公理系统的完全性定理,即可以证明:公式A在公理系统中可以证明的当且仅当A是普遍有效的。同样,一阶谓词演算的公理系统也是协调(无矛盾)的、相独立的。1936年丘奇和图林独立的证明一阶谓词演算公式的一般判定问题不可解问题,可以变为去解决具有特殊形式的范式公式的判定问题。

4、其他逻辑演算

逻辑演算系统很多,命题演算应该说来源于布尔,布尔的系统是非真即假的二值系统。真值大于2的逻辑系统称为多值逻辑。多值逻辑首先由波兰数学家卢卡西维茨在1920年引进,波斯特在1921年也独立地引进。多值逻辑有着广泛的应用,在二十世纪七十年代,国际上就曾多次召开专门的多值逻辑会议。

另一种常见的逻辑是模态逻辑,它是美国逻辑学家刘易斯在1918年引进的。他考虑的不是实质蕴涵而是严格蕴涵。另外,他在逻辑中也考虑所谓必要性与可能性等问题,引进著名的模态算子,这是直观可能性的形式化。

还有一个包括古典逻辑演算的公理系统,即直觉主义公理系统,其中否定排中律,它是荷兰数学家海丁于1930年引进的。它虽因直觉主义而得名,但是可以得到其他的解释,在现代数理逻辑的研究中十分重要。

在数理逻辑的研究中,狭义谓词演算是最重要的。狭义谓词演算也称一阶谓词演算,许多人默认数学中所用的逻辑通用为一阶谓词演算。但是,许多涉及数学问题的逻辑演算必须加进有关等号的谓词,称为具等式的一阶谓词演算。这是现在最常用的一种逻辑系统,在研究算术系统中就要用到它。

但是,即使象实数的算术系统,一阶谓词演算也是不够的,更何况现代数学中涉及集合的子集,因此一阶谓词演算是不足以表达的。这时需要二阶谓词演算乃至高阶谓词演算,其中首先出现的是谓词变元。

不过,在现代数理逻辑的研究中,常常通过其它方式推广一阶谓词演算。比如一种常用的“无穷”逻辑允许无穷公式,即公式中容许可数多合取或析取,不过量词仍限制为有限多。这种无穷逻辑现在在集合论、递归论、模型论当中是必不可少的。另外一种推广一阶谓词演算的途径是引进新的量词,比如“存在许多……”。

逻辑系统比数学系统更不统一,各人用的系统在细节上有许多不同,而且同一概念也用不同的符号来表示。第一套是弗雷格自己系统运用的,但是连他的后继者也不用这套极不方便的符号系统。第二套是皮亚诺首先在《数学论集》提出的,后经罗素和怀特海在《数学原理》中使用。一般文献通用的都是这种符号系统的改进形式,如希尔伯特和他的学生们采用的也属于这一套。第三套是卢卡西维茨使用的,后来也有人用,如普瑞尔在《形式逻辑》中就加以来用。

 

§3第三次数学危机产生的背景(下)

1、 集合论的创立和传播

集合论的创立者格奥尔格·康托尔,184533日出生于俄国圣彼得堡(前苏联列宁格勒)一个商人家庭。他在中学时期就对数学感兴趣。1862年,他到苏黎世上大学,1863年转入柏林大学。

当时柏林大学正在形成一个数学教学与研究的中心,他在1867年的博土论文中就已经反映出“离经叛道”的观点,他认为在数学中提问的艺术比起解法来更为重要。的确,他原来的成就并不总是在于解决间题,他对数学的独特贡献在于他以特殊提问的方式开辟了广阔的研究领域。他所提出的问题一部分被他自己解决,一部分被他的后继者解决,一些没有解决的问题则始终支配着某一个方向的发展,例如著名的连续统假设。

1869年康托尔取得在哈勒大学任教的资格,不久就升为副教授,并在1879年升为教授,他一直到去世都在哈勒大学工作。哈勒是一个小地方,而且薪金微薄。康托尔原来希望在柏林找到一个薪金较高、声望更大的教授职位,但是在柏林,那位很有势力而且又专横跋扈的克洛耐克处处跟他为难,阻塞了他所有的道路。原因是克洛耐克对于他的集合论,特别是他的“超穷数”观点持根本否定的态度。由于用脑过度和精神紧张,从1884年起,他不时犯深度精神抑郁症,常常住在疗养院里。191816日他在哈勒大学附近的精神病院中去世。

集合论的诞生可以说是在1873年年底。187311月,康托尔在和戴德金的通信中提出了一个问题,这个问题使他从以前关于数学分析的研究转到一个新方向。他认为,有理数的集合是可以“数”的,也就是可以和自然数的集合成一对一的对应。但是他不知道,对于实数集合这种一对一的对应是否能办到。他相信不能有一对一的对应,但是他“讲不出什么理由”。

不久之后,他承认他“没有认真地考虑这个问题,因为它似乎没有什么价值”。接着他又补充一句,“要是你认为它因此不值得再花费力气,那我就会完全赞同”。可是,康托尔又考虑起集合的映射问题来。很快,他在1873127日又写信给戴德金,说他已能成功地证明实数的“集体”是不可数的了,这一天可以看成是集合论的诞生日。

戴德金热烈的祝贺了康托尔取得的成功。其间,证明的意义也越来越清楚。因为康托尔还成功地证明代数数的集合也是可数的。所谓代数数就是整系数代数方程的根,而象π与e这样的不能成为任何整系数代数方程的根的数,则称为超越数。

早在1847年,刘维尔就通过构造的方法(当时大家认为是唯一可接受的方法)证明了超越数的存在,也就是具体造出超越数来。可是,康托尔1874年发表的有关集合论的头一篇论文《论所有实代数集合的一个性质》断言,所有实代数数的集合是可数的,所有实数的集合是不可数的。因此,非代数数的超越数是存在的,并且其总数要比我们熟知的实代数数多得多,也就是说超越数的集合也是不可数的。

康托尔的这种证明是史无前例的。他连一个具体的超越数都没有举出来,就“信口开河”的说超越数存在,而且比实代数数的“总数”多得多,这怎么能不引起当时数学家的怀疑甚至愤怒呢?

其实,康托尔的著作主要是证明了无穷之间也有差别,既存在可数的无穷,也存在那种像实数集合那样不可数的、具有“连续统的势”的无穷。过去数学家认为靠得住的只有有限,而无穷最多只是模模糊糊的一个记号。而康托尔把无穷分成许多“层次”,这真有点太玄乎了。

1878年,康托尔发表了集合论第二篇文章,其中把隐含在1847年文章中的“一一对应”概念提出来,作为判断两个集合相同或不同的基础,这就是最原始的等价观念。而两个集合相互之间如果能够一一对应就称为等势,势的概念于是应运而生。

1879年到1884年,康托尔发表了题为“论无穷线性点集”的一系列文章,共有六篇,这些文章奠定了新集合论的基础。特别是在1883年的文章中引进生成新的超穷数概念,并且提出了所谓连续统假设,即可数基数后面紧接着就是实数基数。他相信这个假设正确,但没能证明。这个假设对于二十世纪数学基础的发展起着极其重大的作用。

康托尔最后的集合论著作是1895年和1897年发表的两篇文章,其中最重要的是引进“序型”的概念,并定义相应的序数。这个时期,反对集合论的势力逐渐削弱,但是集合论的内在矛盾已经开始暴露出来了。

康托尔自己最早发现了集合论的内在矛盾。他在1895年文章中遗留下两大问题未解决:一个是连续统假设,另一个是所有超穷基数的可比较性。他虽然认为无穷基数有最小数但没有最大数,但没有明显叙述其矛盾之处。

第一个发表集合论悖论的是意大利数学家布拉里·福蒂,他指出所有序数的集合这个概念的内在矛盾,但是当时认为这也许能够补救。一直到1903年罗素发表他的著名悖论,集合论的内在矛盾才突出出来,并成为二十世纪集合论和数学基础研究的出发点。

康托尔的集合论是数学上最具有革命性的理论,因此它的发展道路自然很不平坦。在当时,占统治地位的观念是:你要证明什么,你就要具体造出什么来。因此,人们只能从具体的数或形出发,一步一步经过有限多步得出结论来。至于“无穷”的世界,即完全是超乎人的能力之外,决不是人所能掌握和控制得了的。

反对集合论最激烈的克洛耐克认为只有他研究的数论及代数才最可靠。他有一句著名的话:“上帝创造了正整数,其余的是人的工作”。他认为除了由数经过有限多步推出的事实,其他一概无效。他甚至认为圆周率 π都不存在,证明 π是超越数也毫无意义。当时柏林是世界数学的中心之一,克洛耐克又是柏林学派的领袖人物,因此他对集合论发展的阻碍作用是非常大的。克洛耐克在1891年去世之后,阻力一下子减少了,康托尔发挥出自己的组织才能,积极筹建德国数学联合会(1891年成立)以及国际数学家大会(1897年第一届大会在苏黎世召开),给集合论获得承认铺平了道路。

另—方面,许多大数学家支持康托尔的集合论。除了戴德金以外,瑞典的数学家米太格-莱夫勒在自己创办的国际性数学杂志“数学学报”(1882年创刊)上,把康托尔集合论的论文译成法文转载,从而大大促进了集合论在国际上的传播。柏林大学教授威尔斯持拉斯也是集合论的同情者,为了捍卫集合论而勇敢战斗的则是希尔伯特。

从此,围绕集合论形成了二十世纪初关于数学基础的大论战。

2  集合论简介

有限和无穷的这个特点可以从下面的小故事反映出来,这个故事据说是希尔伯特说的。

某一个市镇只有一家旅馆,这个旅馆与通常旅馆没有不同,只是房间数不是有限而是无穷多间,房间号码为1234,……我们不妨管它叫希尔伯特旅馆。这个旅馆的房间可排成一列的无穷集合(1234,…),称为可数无穷集。

有一天开大会,所有房间都住满了。后来来了一位客人,坚持要住房间。旅馆老板于是引用“旅馆公理”说:“满了就是满了,非常对不起!”。正好这时候,聪明的旅馆老板的女儿来了,她看见客人和她爸爸都很着急,就说:“这好办,请每位顾客都搬一下,从这间房搬到下一间”。于是1号房间的客人搬到2号房间,2号房间的客人搬到3号房间……依此类推。最后1号房间空出来,请这位迟到的客人住下了。

第二天,希尔伯特旅馆又来了一个庞大的代表团要求住旅馆,他们声称有可数无穷多位代表一定要住,这又把旅馆经理难住了。老板的女儿再一次来解围,她说:“您让1号房间客人搬到2号,2号房间客人搬到4号……,k号房间客人搬到2k号,这样,1号,3号,5号,……房间就都空出来了,代表团的代表都能住下了。”

过一天,这个代表团每位代表又出新花招,他们想每个人占可数无穷多间房来安排他们的亲戚朋友,这回不仅把老板难住了,连女儿也被难住了。聪明的女儿想了很久,终于也想出了办法。(因为比较繁琐,这里不详细介绍了)

希尔伯特旅馆越来越繁荣,来多少客人都难不阅聪明的老板女儿。后来女儿进了大学数学系。有一天,康托尔教授来上课,他问:“要是区间[01]上每一点都占一个房间,是不是还能安排?”她绞尽脑汁,要想安排下,终于失败了。康托尔教授告诉她,用对角线方法证明一切想安排下的方案都是行不通的。

由康托尔的定理,可知无穷集合除了可数集台之外还有不可数集合,可以证明:不可数集合的元素数目要比可数集合元素数目多得多。为了表示元素数目的多少,我们引进“基数”也称“势”的概念,这个概念是自然数的自然推广。可以与自然数集合N一一对应的所有集合的共同性质是它们都具有相同的数目,这是最小的无穷基数记做ω。(ω是希伯来文字母第一个,读做阿列夫)。同样,连续统(所有实数或[01]区间内的所有实数集合)的基数是C。康托尔还进一步证明,C2ω。,问题是C是否紧跟着ω。的第二个无穷基数呢?这就是所谓连续统假设。

3、数学的公理化

十九世纪末到二十世纪初,数学已发展成为一门庞大的学科,经典的数学部门已经建立起完整的体系:数论、代数学、几何学、数学分析。数学家开始探访一些基础的问题,例如什么是数?什么是曲线?什么是积分?什么是函数?……另外,怎样处理这些概念和体系也是问题。

经典的方法一共有两类。一类是老的公理化的方法,不过非欧几何学的发展,各种几何学的发展暴露出它的许多毛病;另一类是构造方法或生成方法,这个办法往往有局限性,许多问题的解决不能靠构造。尤其是涉及无穷的许多问题往往靠逻辑、靠反证法、甚至靠直观。但是,哪些靠得住,哪些靠不住,不加分析也是无法断定的。

对于基础概念的分析研究产生了一系列新领域—抽象代数学、拓扑学、泛函分析、测度论、积分论。而在方法上的完善,则是新公理化方法的建立,这是希尔伯特在1899年首先在《几何学基础》中做出的。

3.1   初等几何学的公理化

十九世纪八十年代,非欧几何学得到了普遍承认之后,开始了对于几何学基础的探讨。当时已经非常清楚,欧几里得体系的毛病很多:首先,欧几里得几何学原始定义中的点、线、面等不是定义;其次,欧几里得几何学运用许多直观的概念,如“介于……之间”等没有严格的定义;另外,对于公理系统的独立性、无矛盾性、完备性没有证明。

在十九世纪八十年代,德国数学家巴士提出一套公理系统,提出次序公理等重要概念,不过他的体系中有的公理不必要,有些必要的公理又没有,因此他公理系统不够完美。而且他也没有系统的公理化思想,他的目的是在其他方面—想通过理想元素的引进,把度量几何包括在射影几何之中。

十九世纪八十年代末期起,皮亚诺和他的学生们也进行了一系列的研究。皮亚诺的公理系统有局限性;他的学生皮埃利的“作为演绎系统的几何学”(1899),由于基本概念太少(只有“点”和“运动”)而把必要的定义和公理弄得极为复杂,以致整个系统的逻辑关系极为混乱。

希尔伯特的《几何学基础》的出版,标志着数学公理化新时期的到来。希尔伯特的公理系统是其后一切公理化的楷模。希尔伯特的公理化思想极深刻地影响其后数学基础的发展,他这部著作重版多次,已经成为一本广为流传的经典文献了。

希尔伯特的公理系统与欧几里得及其后任何公理系统的不同之处,在于他没有原始的定义,定义通过公理反映出来。这种思想他在1891年就有所透露。他说:“我们可以用桌子、椅子、啤酒杯来代替点、线、面”。当然,他的意思不是说几何学研究桌、椅、啤酒怀,而是在几何学中,点、线、面的直观意义要抛掉,应该研究的只是它们之间的关系,关系由公理来体现。几何学是对空间进行逻辑分析,而不诉诸直观。

希尔伯特的公理系统包括二十条公理,他把它们分为五组:第一组八个公理,为关联公理(从属公理);第二组四个公理,为次序公理;第三组五个公理;第四组是平行公理;第五组二个,为连续公理。

希尔伯特在建立公理系统之后,首要任务是证明公理系统的无矛盾性。这个要求很自然,否则如果从这个公理系统中推出相互矛盾的结果来,那么这个公理系统就会毫无价值。希尔伯特在《几何学基础》第二章中证明了他的公理系统的无矛盾性。这次,他不能象非欧几何那样提出欧氏模型,他提出的是算术模型。

实际上,由解析几何可以把点解释为三数组(可以理解为坐标(xyz)),直线表示为方程,这样的模型不难证明是满足所有20个公理的。因此,公理的推论若出现矛盾,则必定在实数域的算术中表现出来。这就把几何学公理的无矛盾性变成实数算术的无矛盾性。

其次,希尔伯特考虑了公理系统的独立性,也就是说公理没有多余的。一个公理如果由其他公理不能推出它来,它对其他公理是独立的。假如把它从公理系统中删除,那么有些结论就要受到影响。希尔伯特证明独立性的方法是建造模型,使其中除了要证明的公理(比如说平行公理)之外其余的公理均成立,而且该公理的否定也成立。

由于这些公理的独立性和无矛盾性,因此可以增减公理或使其中公理变为否定,并由此得出新的几何学。比如平行公理换成其否定就得到非欧几何学;阿基米德公理(大意是一个短线段经过有限次重复之后,总可以超出任意长的线段)换成非阿基米德的公理就得到非阿基米德几何学。希尔伯特在书中详尽地讨论了非阿基米德几何学的种种性质。

希尔伯特对初等几何公理的无矛盾性是相对于实数的无矛盾性,因此自然要进一步考虑实数系的公理化及其无矛盾性,于是首当其冲的问题是算术的公理化。

3.2   算术的公理化

数学,顾名思义是一门研究数的科学。自然数和它的计算—算术是数学最明显的出发点。历史上不少人认为,所有经典数学都可以从自然数推导出来。可是,一直到十九世纪末,却很少有人解释过什么是数?什么是0?什么是1?这些概念被认为是最基本的概念,它们是不是还能进一步分析,这是一些数学家关心的问题。因为一旦算术有一个基础,其他数学部门也就可以安安稳稳建立在算术的基础上。

什么东西可以做为算术的基础呢?在历史上有三种办法:康托尔的基数序数理论,他把自然数建立在集合论的基础上,并把自然数向无穷推广;弗雷格和罗素把数完全通过逻辑词汇来定义,把算术建立在纯逻辑的基础上;用公理化的方法通过数本身的性质来定义,其中最有名的是皮亚诺公理。

在皮亚诺之前,有戴德金的公理化定义。他的方法是准备向有理数、实数方面推广,为数学分析奠定基础。他们也都注意到逻辑是基础,但都有非逻辑公理。

1888年,戴德金发表《什么是数,什么是数的目的?》一文,阐述他的数学观点。他把算术(代数、分析)看成逻辑的一部分,数的概念完全不依赖人对空间、时间的表象或直觉。他说“数是人类心灵的自由创造,它们做为一个工具,能使得许许多多事物能更容易、更精确地板掌握”。而创造的方法正是通过逻辑。他的定义是纯逻辑概念—类(System),类的并与交,类之间的映射,相似映射(不同元素映到不同元素)等等。通过公理定义,戴德金证明数学归纳法。但是他没有能够直接从纯逻辑名词来定义数。

1889年,皮亚诺发表他的《算术原理:新的论述方法》,其中明显地做了两件事:第一,把算术明显地建立在几条公理之上;第二,公理都用新的符号来表达。后来皮亚诺刻划数列也同弗雷格一样是从0开始,但是他对数的概念也同戴德金一样,是考虑序数。

皮亚诺的兴趣主要在于清楚地表述了数学结果,他编制的数理逻辑符号(1894年发表于《数学论集》)也主要是如此,而不是为了哲学分析。1900年罗素从皮亚诺学习这套符号之后,才对逻辑、哲学同时也对数学产生了巨大冲击。

1894年到1908年,皮亚诺接连五次出版了《数学论集》的续集,每一次都把他提出的五个公理(只是用01)作为算术的基础。但是皮亚诺除了逻辑符号之外,还有其他三个基本符号,即:数、零、后继。因此,他还不象弗雷格及罗素那样把数完全建立在逻辑基础上。

他的公理系统也是有毛病的,特别是第五公理涉及所有性质,因此须要对性质或集合有所证明。有人把它改为可数条公理的序列,这样一来,由公理系所定义的就不单纯是自然数了。斯科兰姆在1934年证明,存在皮亚诺公理系统购非标准模型,这样就破坏了公理系统的范畴性。

3.3   其他数学对象的公理化

在十九世纪末到二十世纪初的公理化浪潮中,一系列数学对象进行了公理化,这些公理化一般在数学中进行。例如由于解代数方程而引进的域及群的概念,在当时都是十分具体的,如置换群。只有到十九世纪后半叶,才逐步有了抽象群的概念并用公理刻划它。群的公理由四条组成,即封闭性公理、两个元素相加(或相乘)仍对应唯一的元素、运算满足结合律、有零元素及逆元素存在。

群在数学中是无处不在的,但是抽象群的研究一直到十九世纪末才开始。当然,它与数理逻辑有密切的关系。有理数集体、实数集体、复数集体构成抽象域的具体模型,域的公理很多。另外,环、偏序集合、全序集合、格、布尔代数,都已经公理化。

另一大类结构是拓扑结构,拓扑空间在1914年到1922年也得到公理化,泛函分析中的希尔伯特空间,巴拿赫空间也在二十年代完成公理化,成为二十世纪抽象数学研究的出发点。在模型论中,这些数学结构成为逻辑语句构成理论的模型。

 

 

 

 

 

 

 

第四章 五大新兴学科的建立

§1数理逻辑

1.符号逻辑

数理逻辑作为一门数学学科,来源于对数学和逻辑基础的探讨,它最早可追溯到莱布尼茨,他关于逻辑演算的观念预示着布尔代数,而英国数学家布尔(GBoole 18151864)1847年出版《逻辑的数学分析》一书,正式推出所谓布尔代数,在逻辑上相当于命题演算.其后由英国数学家杰方斯(WSJevons18351882)和小皮尔斯(CSPeirce18391914)1874年加入次序关系,

德国数学家施罗德(E.Schroder18411902)在他的《逻辑代数讲义》第一卷中加以公理化.第一个完全形式化的语言是德国数学家弗瑞格(GFrege18481925)1879年出版的《概念文字》中引进的.他首先定义了全称量词及存在量词.并引进一般的谓词逻辑.不过相应的逻辑代数一直到1950年才由波兰数学家塔斯基(ATarski19021983)所发展,他引进所谓“圆柱代数”.1955年美国数学家哈尔莫斯(PHalmos1916)又引进多进代数,形成一般的逻辑代数理论.1889年意大利数学家皮亚诺(GPeano18581932)提出自然数的公理系统,即后来所谓皮亚诺算术公理.而戴德金在前一年也提出类似的公理系统.弗雷格在1884年出版的《算术基础》中开始提到算术无非是扩展的逻辑.戴德金也提出类似的观点.弗雷格在1893年出版的《算术的基本规律》第一卷中,用五条逻辑公理来推导算术命题.19026月罗素给弗雷格一封信,提出著名的罗素悖论,并指出弗雷格的矛盾.弗雷格在1903年出版的《算术的基本规律》第二卷附录中承认这是对他的巨大打击,正是这个悖论,揭开了数理逻辑新的一章.

2.罗素悖论

罗素的悖论是关于集合论的,康托尔已经意识到不加限制地谈论“集合的集合”会导致矛盾.其他人也发现集合论中存在矛盾.而罗素在1903年出版的《数学的原理》(Principles of Mathematics)中,则十分清楚地表现出集合论的矛盾,从而动摇了整个数学的基础.罗素的悖论是说:可以把集合分成两类:凡不以自身为元素的集合称为第一类集合,凡以自身做为元素的集合称为第二类的集合,每个集合或为第一类集合或为第二类集合.设M表示第一类集合全体所成的集合.如果M是第一类集 现了这个矛盾之后,导致第三次数学危机,在数学界出现了各种意见,从抛弃集合论到尽可能保持集合论在数学中的基础地位的都有.由于20世纪数学的发展主流是建立在集合论基础之上,这里只考虑数学家如何消除悖论.在20世纪初,大致有两种办法,一个办法是罗素的分支类型论,它在1908年发表,在这个基础上罗素与怀特海(ANWhitehead18611947)写出三大卷《数学原理》(principia Mathematica19101913),成为数理逻辑最早一部经典著作.还有一个办法是公理方法限制集合,由此产生公理集合论.

3.集合论的公理化

康托尔本人没有对集合论进行公理化.集合论公理化是策梅罗(EZermelo18711953)1908年发表的.富兰克尔(AFraenkel18911965)等人曾加以改进,形成著名的ZF系统,这是最常用的一个系统,因此大家都希望从中推出常用的选择公理(1904年策梅罗引进它来之间没有其他基数)等。

1940年哥德尔(19061978)证明,选择连续统假设设与ZF系统是相容的.1963年,柯亨(PCohen1934)发明“力迫法”证明这两条“公理”的否定也不能在ZF系统中证明,从而推出其独立性.

4.希尔伯特纲领

为了使数学奠定在严格公理化基础上,1922年希尔伯特提出希尔伯特纲领,首先将数学形式化,构成形式系统,然后通过有限主义方法证明其无矛盾性.

1928年希尔伯特提出四个问题作为实现其纲领的具体步骤:

(1)分析的无矛盾性.1924年阿克曼(WAckermann8961962)1927年冯·诺伊曼(JVon Neumann19031957)的工作使希尔伯特相信只要一些纯算术的初等引理即可证明分析的无矛盾性.

1930年夏天,哥德尔开始研究这个问题,他不理解希尔伯特为什么要直接证明分析的无矛盾性.哥德尔认为应该把困难分解:用有限主义的算术证明算术的无矛盾性,再用算术的无矛盾性证明分析的无矛盾性.哥德尔由此出发去证明算术的无矛盾性而得出不完全性定理.

(2)更高级数学的无矛盾性.特别是选择公理的无矛盾性.这个问题后来被哥德尔在1938年以相对的方式解决.

(3)算术及分析形式系统的完全性.这个问题在1930年秋天哥尼斯堡的会议上,哥德尔已经提出了一个否定的解决.这个问题的否定成为数理逻辑发展的转折点.

(4)一阶谓词逻辑的完全性,这个问题已被哥德尔在1930年完全解决.这样一来哥德尔把希尔伯特的方向扭转,使数理逻辑走上全新的发展道路.

5.哥德尔的三项重大贡献

除了连续统假设的无矛盾性之外,哥德尔在19291930年证明下面两大定理:

(1)完全性定理:哥德尔的学位论文《逻辑函数演算的公理的完全性》解决了一阶谓词演算的完全性问题.罗素与怀特海建立了逻辑演算的公理系统及推演规则之后,数学家最关心的事就是公理系统的无矛盾性及完全性.所谓完全性就是,每一个真的逻辑数学命题都可以由这个公理系统导出,也就是可证明.命题演算的完全性已由美国数学家波斯特(EPost18971954)1921年给出证明.而一阶谓词演算的完全性一直到1929年才由哥德尔给出证明.

(2)不完全性定理:这是数理逻辑最重大的成就之一,是数理逻辑发展的一个里程碑和转折点.

哥德尔证明不完全性定理是从考虑数学分析的无矛盾性问题开始的.1930年秋在哥尼斯堡会议上他宣布了第一不完全性定理:一个包括初等数论的形式系统,如果是无矛盾的,那就是不完全的.不久之后他又宣布:如果初等算术系统是无矛盾的,则无矛盾性在算术系统内不可证明.

哥德尔的不完全定理造的是一个不自然的数论问题,数学家一直希望在一阶皮亚诺算术中找到一个数学表述既简单又有趣的数论问题,就像哥德巴赫猜想或费马大定理来说明算术的不完全性.这一直到1977年才由巴黎斯(JParis)等人造出,这更加证明希尔伯特纲领是不可能实现的.

6.哥德尔以后的数理逻辑

哥德尔的不完全性定理从根本上动摇了数学的基础,它指出绝对的无矛盾性的证明是不可能实现的,数学家只能限制自己的领域及要求.数理逻辑也成为一个专门的学科,它分成四大分支:证明论、递归论、公理集合论及模型论,它们都在30年代发展起来.证明论仍然继续希尔伯特纲领,但不得不放宽有限主义的条件.其中最主要的成就是根岑(GGentzen19091945)1934年用超穷归纳法证明自然数算术的无矛盾性.递归论也奠定基础,1935年克林尼(S.Kleene19091994)定义一般递归函数,1936年图林(ATuˉring1912)提出图林机概念.同年车尔赤(AChurch1903)提出车尔赤论点:任何有效可计算函数均等价于一般递归函数.递归论与数学关系至为密切,它不仅为计算机科学奠定基础,同时一系列判定问题则直接涉及数学基本问题:如群的基本问题是问什么时侯两个群同构,对于有限表出群是1908年提出的,到50年后,苏联数学家阿其扬(C.И.Aдьян,)1957年及以色列数学家拉宾(MORabin)1958年独立证明这问题是不可解的.在这个基础上,小马尔科夫(AAMapkoB19031979)证明拓扑学的基本问题——同胚问题也是不可解的,1970年最终证明希尔伯特第十问题是不可解的.模型论首先是处理真假问题,它指出一系列命题在某些模型下为真,而在另外模型下非真.其次它构造一批非标准模型.1934年斯科仑(TSkolem18871968)给出整数的非标准模型,1961年鲁宾逊(ARobinson19181974)提出非标准分析,使莱布尼茨的无穷小合法化,创立了非标准数学.

§2抽象代数学

代数学与拓扑学是现代数学的两大部门.它们构成现代数学的基础与核心.没有代数学和拓扑学,现代数学(除了那些较为孤立的、相对地讲不太重要的学科)可以说寸步难行.

抽象代数学或近世代数学是在20世纪初发展起来的.19301931年范·德·瓦尔登(BLvander Waerden1903)的《近世代数学》(Moderne Algebra)一书问世,在数学界引起轰动,由此之后,抽象代数学或近世代数学成为代数学的主流,不久之后也就理所当然地把“抽象”及“近世”的帽子甩掉,堂尔皇之成为代数的正统.

范·德·瓦尔登的书至今仍然是代数学的模式.它是根据德国女数学家E.诺特(ENoether18821935)和德国数学家阿廷(EArtin18981962)的讲义编写而成,在精神上基本来源于他们两位,特别是诺特,被公认为“近世代数学之母”.在诺特之前,不少大数学家都对近世代数学有过这样或那样的贡献,但是这种与经典代数学迥然不同的思想主要来源于戴德金和希尔伯特,戴德金不仅引进大多数抽象代数观念——如理想、模、环、格等,而且初步研究它们的结构及分类,而希尔伯特的抽象思维方式及公理方法则对现代整个数学都有举足轻重的影响.

抽象代数学的研究对象与研究目标与经典代数学有着根本的不同:经典代数学的主要目标是求解代数方程和代数方程组,而抽象代数学的目标则是研究具有代数结构的集合的性质,刻划它们并加以分类,这些对象是用公理定义的.

1.域论

从古代起,人们就已经熟悉有理数和它们的运算——加法和乘法.这些运算满足加法交换律和加法结合律,乘法交换律和乘法结合律,以及分配律,而且对于加法存在零元素(0)及逆元素(倒数).所有有理数的集合是人们最早认识的具体的域,后来也知道实数集合、复数集合同样满足上述公理,它们也是城.除了这些最熟悉的域之以,在19世纪研究得最多的域是代数数域,这些都是含有无穷多元素的数域.有没有有限多个元素的域呢?1830年伽罗瓦已知有有限多个元素的域(后来被称为伽罗瓦域),其元素被称为伽罗瓦虚数,它们满足pa0,其中p是一个素数,p称为域的特征.伽罗瓦曾具体证明,在一个特征为p的伽罗瓦域中,元素个数是p的一个幂.如在当时的情况一样,伽罗瓦所作的一切都是有具体表示的.到19世纪末,人们知道其他域的例子还有有理函数域及代数函数域.

从整体结构上对域进行考察始自戴德金及克罗内克对代数数域的研究(1855年起).但抽象域的观念则来自德国数学家韦伯(HWeber18421913),他的思想来自抽象群的观念.后来美国数学家狄克逊(LEDickson18741954)及亨廷顿(EVHuntington18741952)给出域的独立的公理系统.在韦伯的影响下,德国数学家施泰尼茨(ESteinitz18711928)1910年发表《域的代数理论》一文,为抽象域论奠定了基础.他把域分为两种类型:一种是特征为p的域,也即对所有元素a满足pa0的域,它们一定包含最小的城(称为素域),最小的域一定是只含p个元素的伽罗瓦域.另一种是不存在这种p的域,称为特征0,其素域一定是有理数域.不管域属于哪一种类型,任何域均可由素域添加一些新元素“扩张”而成.所以域的根本问题是研究域的扩张.他对扩张进行了分类,其中主要的一类是添加系数在原域中的多项式的根后所得的扩张(代数扩张).当一个域通过代数扩张不能再扩大时称为代数封闭域.施泰尼茨证明,每个域均有唯一的代数封闭域.特别他还对特征p一般域胁许多特殊性质如不可分性、不完全性进行研究.

关于抽象有限域,已经有了相当完整的结果:1893年美国数学家莫尔(EHMoore18621932)证明,任何一有限域必定与某一个伽罗瓦域同构.反过来,对于任意素数p和正整数a,必定存在唯一一个伽罗瓦域,具有pa个元素.有限域理论在数论、编码理论、组合理论及数理统计等方面有着许多应用.

在域论中引进p进域是一个重大成就.德国数学家亨泽尔(KHensel18611941)1908年出版的《代数数论》(Theorie der algebraischen Zahlen)中系统阐述了p进数,他对这种数规定了加、减、乘、除四种基本运算,构成一个域称p进域,而它是有理数域的一个完备化,如同实数域一样.但是与实数域性质的一个很大的不同是实数域具有阿基米德性质,也就是对任何两个实数ab总存在一个正整数n,使nabp进域虽然也有一个自然的顺序,但却没有阿基米德性质.pˉ进数域是一种“局部”域,在它里面也可定义整数及代数数,它的建立大大有助于数论的发展.亨泽尔之后,抽象赋值论得到发展,在代数数论及代数几何学上有着重要应用.

抽象理论的建立不仅使已有的零散知识系统化,而且有助于许多问题的解决,1927年阿廷解决希尔伯特第17问题就是靠他引进抽象的实域(他称为形式实域).实域k是把实数域的一个特性抽象化:即-1不能表示为k中元素的平方和.通过这个概念,他证明“任何正定有理函数都可表示为有理函数平方和”.

2.环论

环的概念原始雏型是整数集合.它与域不同之处在于对于乘法不一定有逆元素.抽象环论的概念来源一方面是数论,整数的推广——代数整数具有整数的许多性质,也有许多不足之处,比如唯一素因子分解定理不一定成立,这导致理想数概念的产生.戴德金在1871年将理想数抽象化成“理想”概念,它是代数整数环中的一些特殊的子环.这开始了理想理论的研究,在诺特把环公理化之后,理想理论被纳入环论中去.

环的概念的另一来源是19世纪对数系的各种推广.这最初可追溯到1843年哈密顿关于四元数的发现.他的目的是为了扩张用处很大的复数.它是第一个“超复数系”也是第一个乘法不交换的线性结合代数.它可以看成是实数域上的四元代数.不久之后凯莱得到八元数,它的乘法不仅不交换,而且连结合律也不满足,它可以看成是第一个线性非结合代数.其后各种“超复数”相继出现.1861年,魏尔斯特拉斯证明,有限维的实数域或复数域上的可除代数,如满足乘法交换律,则只有实数及复数的代数(1884年发表)1870年戴德金也得出同样结果(1888年发表)1878年弗洛宾尼乌斯(FGFrobenius18491917)证明实数域上有限维可除代数只有实数、复数及实四元数的代数.1881年小皮尔斯也独立得到证明.1958年用代数拓扑学方法证明,实数域上有限维可除代数,连非结合可除代数也算在内,只有1248这四种已知维数.可见实数域及复数域具有独特的性质.

关于域上线性结合代数的研究在19世纪末处于枚举阶段,1870年老皮尔斯(BPeirce18091880)发表《线性结合代数》,列举6维以下的线性结合代数162个.他还引进幂零元与幂等元等重要概念为后来的结构理论奠定基础.1898年、嘉当(ECartan)在研究李代数的结构基础上,对于结合代数进行类似的研究,1900年,德国数学家摩林(TMolien18611941)征明,复数域上维数≥2的单结合代数都与复数域上适当阶数的矩阵代数同构.线性结合代数的结构定理是1907年由美国数学家魏德本(JHMWedderburn18821948)得出的:线性结合代数可以分解为幂零代数及半单代数,而半单代数又可以表示为单代数的直和.单代数可表为域上可除代数的矩阵代数.这样结合代数就归结为可除代数的研究.可除代数有着以下的结果.1905年魏德本证明:有限除环都是(交换)域,也即伽罗瓦域.当时除了伽罗瓦域及四元数之外,不知道有别的除环.20世纪虽然发现了一些新的除环,但除环的整个理论至今仍不完善.

从线性结合代数到结合环的过渡是阿廷完成的.1928年,阿廷首先引进极小条件环(即左、右理想满足降键条件的环,后称阿廷环),证明相应的结构定理.对于半单环的分类,雅可布孙(N.Jacobson1910)创立了他的结构理论.他认为对任意环均可引进根基的概念,而对阿廷环来说,根基就是一组真幂零元.对于非半单的阿廷环(主要出现于有限群的模表示中),如福洛宾尼乌斯代数及其推广也有许多独立的研究.而与阿廷环对应的是诺特环,对于有么无的环,秋月康夫(19021984)及霍普金斯(CH opkins)证明阿廷环都是诺特环.对于诺特环,却长期没有相应的结构理论.一直到1958年英国数学家戈尔迪(AWGoldie)才取得突破,他证明任何诺特半素环都有一个阿廷半单的分式环,这才促进了新研究.与诺特环平行发展的是满足多项式等式的环.近来环表示论及同调方法的应用对结合环理论有极大促进.

环论的另一来源是代数数论及代数几何学及它们导致的交换环理论.1871年戴德金引进理想概念,开创了理想理论.环这个词首先见于希尔伯特的数论报告.代数几何学的研究促使希尔伯特证明多项式环的基定理.在本世纪初英国数学家腊斯克(ELasker18681941)及麦考莱(FSMacaulay18621937)对于多项式环得出分解定理.对于交换环的一般研究来源于E.诺特.她对一般诺特环进行公理化,证明准素分解定理从而奠定交换环论乃至抽象代数学基础,其后克鲁尔(WKrull18991971)给出系统的研究,他还引进了最值得注意的局部环.四十年代,薛华荔、柯恩(ISCohen19171955)及查瑞斯基(OZariski18991986)对局部环论进行了系统的研究.

3.群论

9世纪末抽象群开始成为独立研究的对象,当时主要问题仍是以置换群为模式的有限群,问题涉及列举给定阶数的所有群以及群的可解性的判据.

当时主要的定理是由挪威数学家西洛(LSylow18321918) 的.而19世纪90年代群论最主要成就是群表示论的出现,它是由德国数学家福洛宾尼乌斯奠定的.后由他的学生舒尔(ISchur18751941)所发展,成为研究群论不可缺少的工具.所谓群表示即是把群具体实现为某种结构的自同构群,例如域F上的有限维线性空间的线性变换群,通常是把群的元素与F上的n×n可逆矩阵相对应.在英国数学家伯恩塞德(WBurnside18521927)的经典著作《有限阶群论》(Theory of Groups of Finite Order)第二版(1911)已经进行综述并给出应用.

20世纪有限群论的中心问题是有限单群的分类.很久以来,就已经知道一个相当长的有限单群的表,除了素数阶循环群之外,对于每一个整数n5存在一个n/2阶单群,它由n个事物的所有偶置换构成,这就是所谓交错群.当n=5时,它就是二十面体群.另外还知道许多射影特殊线性变换群PSL(nq),它们通过行列式为1n×n矩阵群(元素取在有限域GL(q))的商群构造出来.另外对于正交矩阵、辛矩阵、酉矩阵也可以造出一批单群来.这些“典型群”,从若尔当时候起就已知道,后来经过美国数学家狄克逊、荷兰数学家范·德·瓦尔登、法国数学家丢东涅(JDieudonné19061992)进行系统研究.真正重大的突破是1955年薛华荔在日本《东北数学杂志》上发表的“论某些单群”的论文,这篇论文的重要性不仅展示一些新单群,而且更重要的是对于以前知道的绝大部分通过李代数换基的办法进行统一的处理,从而得出九个系列的薛华荔群.其后,这些薛华荔群经过美国数学家斯坦伯格(RSteinberg1922)、韩国数学家李林学、比利时数学家梯茨(JTits1930)、日本数学家铃木通夫(1926)等人加以扩充,得出全部李型单群的16系列.除了上述这18个序列中的有限单群之外,还有几个不属于它们的所谓“散在单群”,其中头一个是7920阶的群M11是法国数学家马丢(ELMathieu18351890)1861年发现的,他不久又发现另外4个单群M12M22M23M24.一直到1965年之前再没有发现新的散在单群了.突然1965年南斯拉夫数学家严科(ZJanko1932)发现了一个175560阶的新单群,其后10年间,陆续发现另外20个敬在单群,其中最大的称为费舍尔(BFischer1936)“魔群”,其阶大约为8.1053,到这时候是否所有单群均已找到,也就是有限单群的分类已经完成了呢?在这条漫长的路上,首先的突破是一系列群论性质及表示论的成果,其中包括1955年布劳尔(RBrauer 19011977)的工作.第二个突破是1963年美国数学家费特(WFeit1930)和汤姆逊(JGThompson1932)证明除循环群之外,奇阶群都是可解群,这个长达250页的论文包括了极其丰富的信息.70年代,在群的结构研究上有了新的突破,最终导致1981年,有限单群的分类彻底完成,不过全文需要1万页以上,这是各国上百位群论专家通力合作的结果.

对于无穷阶的离散群,也有一些重要的研究,其中重要的是与数理逻辑有关的“字的问题”,即两个符号序列何时相等,对于有限生成的具有有限个关系式的群,1955年左右苏联数学家诺维科夫(Π·C·Hовиков,19011975)、美国数学家布里顿(JLBritton)和布恩(WBoone19201983)证明一般的字的问题是不可解的,也就是不存在一个普遍的算法来判定两个字是否相等,但是另一方面德国数学家马格努斯(WMagnus1907)1932年解决一个关系式的有限生成群的字的问题.另一个重要的问题是伯恩赛德问题,他问一个有限生成的群如果其所有元素都是有限阶的,该群是否有限,这个问题一直到1964年由前苏联数学家考斯特利金(А.И.Кострикин,1929)举出例子而得出否定的回答.另外还有一个狭义的伯恩赛德猜想,即有限生成群当所有元素x满足xn0是有限群,现在知道当n2346时,狭义伯恩赛德猜想成立,但如果n相当大,诺维科夫和布里顿等人也举出反例.

§3测度与积分理论

测度是长度、面积和体积概念的精密化及推广.各民族数学发展一开始均致力于测量长度和面积,得出相应的公式及方法,而统一的求积方法一直到牛顿和莱布尼茨建立微积分之后才得到.这时求积问题变成一个特殊的积分问题.但积分是一个相当复杂的概念,19世纪由于分析的严格化才导致由柯西、黎曼及达布相继改进的黎曼积分的概念,最后确定下来.

随着康托尔点集论的建立,要求对更一般的点集的“大小”进行比较及量度,这要求定义测度.先是对黎曼可积性条件中函数的不连续点集的“测度”给出定义.最早是哈那克(AHarnack18511888)、杜布瓦—瑞芒(Pdu Bois Reymond18311889)、史托尔茨(OStolz18421905)及康托尔在18811885试着做出定义,他们均采用覆盖区间长度的下确界,但是这样定义有毛病.例如,两个无公共点集的并集的“测度”有时能够小于两集的“测度”之和,除了上述定义的“外”测度之外,最先定义“内”测度的是皮亚诺,他在1887年定义“可测”集为内、外测度相等,这样虽然克服上述困难,但有界开集并不一定可测.若尔当在他的《分析教程》第一卷第二版(1893)中也做了类似的定义,同样也有类似的毛病.对这些毛病的补救来自波莱尔(EBorel18711956),他在《函数论教程》中大大改进了以前的测度观念,利用可数可加性对任一有界开集构造地定义测度.他还考虑零测度集(实际上这个观念可以追溯到黎曼).而真正把波莱尔的方法同皮亚诺—若尔当的办法结合而形成系统测度论的则是波莱尔的学生勒贝格,这些发表在他的博士论文《积分、长度、面积》当中.

勒贝格的功绩不仅在于建立系统的测度理论,更主要的是建立系统的积分理论.在勒贝格之前,除了黎曼积分之外,还有斯蒂尔吉斯(TJStieltjes18561894)积分.斯蒂尔吉斯在1894年发表的“连分式的研究”中证明:如连分式

    

 

F(Z)F(Z)可表为

 

   

曼积分对于一般的数学分析已经足够,但是还有一系列不理想的地方.

微积分的基本定理是微分和积分互为逆运算,也就是说如果

则导数F(x)存在,而且等于f(x),至少在f光滑的点是如此.但是1881年沃尔泰拉(VVolterra18601940)还在比萨大学做学生时,发现一个例子:一个函数F(01)区间上定义有界,其导数fF′处处存在,但是在当时流行的积分——黎曼可积的意义是不可积的.因此,需要定义一种积分,它可以在更广的一类函数上定义,而且使微分和积分成为互逆的运算.另外对这种积分还希望收敛级数可以逐项积分.勒贝格在他的1902年学位论文中迈出新的一步,他定义勒贝格积分与以前定义积分的方式不同,以前是先定义积分,然后由积分得到“测度”,勒贝格与此相反,他先定义测度,然后定义积分.他定义积分时,不去把自变量的区间加以区分,而把因变量y的区间(对于实函数来说是R的子集)加以重分(成有限个区间),再仿照通常的办法定义积分,这样就可以使一些很坏的函数也成为勒贝格可积的,最明显的例子就是狄利克雷函数.这样,大大扩充了可积函数的范围.另外如果勒贝格可积函数同时也黎曼可积,则两个积分相等.并且与一些极限运算可以交换,而且可以推广到高维.

勒贝格积分虽然能解决沃尔泰拉原来的问题,但并不足够一般以致能够使所有具有有限导数f(x)F(x)的函数F(x)的导数f(x)=F(x)都可积.为此,法国数学家当日瓦(ADenjoy18841974)1912年和德国数学家佩隆(OPerron18801975)1914年分别设计了以他们各自的姓定义的积分.其后鲁金(HH.Лузин,18831950)给出描述性定义,这三者是等价的.

1915年法国数学家弗雷歇把积分扩张到抽象集合的泛函上.他的模式取自1913年奥地利数学家拉东(JRadon18871956)的工作,其中引进集函数.他实际上综合了斯蒂尔吉斯积分与勒贝格在1910年把勒贝格测度论推广到高维(三维及三维以上)欧氏空间的研究.勒贝格通过可测函数的积分定义一个集函数,证明它是完全可加的而且绝对连续的.不过他只有点函数观念,而拉东则利用集函数定义拉东测度.1930年波兰数学家尼古丁(ONikodyn18871974)对抽象测度论完成了1910年勒贝格定理在抽象测度论的推广,最终完成抽象测度论的建立.它不仅构成概率论的基础,同时也是抽象调和分析、谱理论等分支不可少的前提.

§4泛函分析

泛函分析是一门新兴学科,1932年才被正式列入德国《数学文摘》.“泛函分析”这个词首先出现于列维(PLévy18861971)1922年出版的《泛函分析教程》中.它是一门分析学科,但与传统的分析学科不太一样,后者强调演算,而前者强调概念.它们的对象也有所不同,后者主要讨论个别函数()的性质,而前者主要讨论函数空间及其上算子的集合,特别是其上的拓扑、代数及序结构.不过很难说它有一个统一的对象及目标.泛函分析大致可分为四大块:一是函数空间理论,从希尔伯特空间、巴拿赫空间到一般拓扑线性空间的理论.二是函数空间上的分析,这是最先发展的一部分,即所谓泛函演算.三是函数空间之间的映射及算子理论,发展最成熟的是希尔伯特空间中的线性算子理论.四是算子(或函数)集合的代数结构,如巴拿赫代数、冯·诺伊曼代数、C*代数以及算子半群等理论.

泛函分析的来源可以追溯到18世纪变分法的产生.正如微积分研究函数的极值一样,变分法研究函数集(空间)上的函数——泛函的极值.而泛函分析的直接推动力则是19世纪末兴起的积分方程的研究.它导致线性泛函分析的诞生.

泛函分析的发展可分三个时期:

第一阶段是创始时期,大约从19世纪80年代到20世纪20年代.开始是意大利一些数学家引进泛函演算,特别是他们引进原始泛函以及线性算子的概念.后来法国数学家发展了泛函演算,这反映在阿达马(JHadamard)1897年第一次国际数学家大会上的报告中.他为了研究偏微分方程而考虑了闭区间[01]上全体连续函数所构成的族,发现这些函数构成一个无穷维的线性空间,并于1903年定义了这个空间上的函数,即泛函.这些还只是具体的结果.

法国数学家弗雷歇利用当时的集合论观念把前人的结果统一成为一个抽象的理论,他把他们的共同点归纳起来而且加以推广:

(1)把函数或曲线看成一个集合或空间中的点.不妨把它们看成一个抽象集合.

(2)点列的极限概念也可以推广,这样有极限概念的集合他称为L空间,这是后来拓扑空间的萌芽.

(3)集合上可以定义取值在实数里的实函数,即泛函.由于有了极限概念,就可以定义泛函的连续性.

(4)泛函可以进行代数运算,也可以进行分析演算,比如微分.这样就成为名符其实的泛函分析了.

1906年他还在抽象的空间中引进“距离”的观念,具有欧几里得空间距离的性质,这种空间就有更丰富的结构.

大约在弗雷歇同时,希尔伯特对于积分方程进行系统的研究.他在前人基础上,深刻认识积分方程与无穷多变无线性方程组之间的相似性,积分方程的有解性与无穷多变元的收敛性条件有关.这样他实际上得到了具体的希尔伯特空间的理论.抽象的希尔伯特空间理论是他的学生施密特(ESchmidt18761959)得到的.他引进实和复的希尔伯特空间的几何观念,把函数看成是平方可积序列的空间(l2空间)的点.1907年,匈牙利数学家黎斯(FRiesz18801956)等人引进勒贝格平方可积空间(L2空间),发现其性质和l2空间相同,两个月之后,德国数学家费歇尔(EFischer18751959)与黎斯(MRiesz18861969)证明l2空间和L2空间同构,只不过是同一种抽象希尔伯特空间的两种具体表现而已.这也反映出研究抽象空间的重要意义.黎斯—费歇尔定理也更清楚表明积分理论和抽象空间的泛函之间的紧密联系.

1910年黎斯仿照L2空间研究了Lp空间(1p<∞)就是p次方可积函数全体构成的空间,后又研究lp空间,它们不是希尔伯特空间,而是巴拿赫(SBanach18921945)空间.他发现lp上连续线性泛函全体

 

方面是不可少的工具.

第二阶段泛函分析正式发展成为一门学科, 1920年到1922年间奥地利数学家哈恩(HHahn18791934),海莱(EHelly18841943),维纳(NWiener18941964)和巴拿赫都对赋范空间进行定义并加以研究,海莱还得到所谓哈恩——巴拿赫定理.但对泛函分析贡献最杰出的是巴拿赫.他进一步把希尔伯特空间推广成巴拿赫空间,用公理加以刻划,形成了系统的理论.他在1932年出版的《线性算子论》一书统一了当时泛函分析众多成果,成为泛函分析第一本经典著作.

这时泛函分析不仅理论上比较完备,而且在古典分析的应用上起着举足轻重的作用,其中特别是波兰数学家肖德尔(JSchauder18991940)和法国数学家勒瑞(JLeray1906)的不动点理论是现代偏微分方程理论的重要工具.他们把微分方程的解看成巴拿赫空间到自身映射的不动点,得出了基本定理,这是现代非线性泛函分析的出发点.

1926年冯·诺伊曼来到哥丁根大学,当时正是哥丁根物理学与数学的全盛时代.量子力学的产生和抽象代数、泛函分析的发展使人们思想空前活跃.冯·诺伊曼把希尔伯特空间公理化,并把量子力学的数学基础建立在泛函分析之上.虽然冯·诺伊曼的公理的来源可以从维纳、外尔和巴拿赫的工作中看到,但冯·诺伊曼的工作更为系统,特别是他关于厄米算子的谱理论.

三十年代末,波兰数学家马祖尔(SMazur19051981)与苏联数学家盖尔范德(Ц.М.Гельфанд,1913)发展巴拿赫代数(赋范环)理论,而且通过抽象方法轻而易举证明古典分析中的大定理.这显示了泛函分析方法的威力,也论证了泛函分析的独立存在的价值.

第三阶段是泛函分析的成熟阶段.从40年代起泛函分析在各方面取得突飞猛进的发展.头等重要的事是施瓦兹(LSchwartz 1915)系统地发展了广义函数论,它现在已成为数学中不可缺少的重要工具.它的前身就是狄拉克(PDirac19021984)在量子力学中引进的δ函数.

第二次世界大战以后,泛函分析取得突飞猛进的发展:1920年到1940年间所发展的局部凸向量空间理论的技术在1945年后主要通过沙顿(RSchatten1911)及格罗登迪克(AGrothendieck1927)引入拓扑张量积的理论而完成.在这个理论的发展过程中,格罗登迪克引进一种新型的拓扑凸空间一核空间,它在许多方面比巴拿赫空间还接近于有限维空间,并且具有许多卓越的性质,使它在泛函分析及概率论的许多分支中证明是非常有用的.

巴拿赫时代就提出来的两个老问题直到1973年才被恩福楼(PEnflo)否定解决掉:他造出一个可分巴拿赫空间,其中不存在(巴拿赫意义下的)基;他还造出一个可分巴拿赫空间的紧算子的例子,它不是有限秩算子(关于紧集上的一致收敛拓扑)的极限.

1900年到 1930年间由希尔伯特、卡勒曼(TCarleman18921949)及冯·诺伊曼所发展的希尔伯特空间的算子谱理论由于盖尔范德及其学派于1941年所创始的巴拿赫代数理论而大大简化及推广.但是,这个理论中最有趣的部分仍然是冯·诺伊曼代数的研究.冯·诺伊曼代数的研究开始得稍早一些,它和希尔伯特空间中局部紧群的酉表示理论有着非常紧密的联系.在冯·诺伊曼的先驱性文章之后,这些代数的分类并没有取得多少进步,特别是相当神秘的“Ⅲ”型因子.到1967年,不同构的Ⅲ型因子只知道三个.其后,事情开始发展很快,几年之内许多数学家发现了新的Ⅲ型因子,一直到1972年到达顶点,发展成一般的分类理论,这个分类理论是建立在富田稔(1924)的思想及康耐(AConnes1947)定义的新的不变量的基础上的,康耐的不变量使他解决了冯·诺伊曼代数理论中许多未解决的问题.

§5拓扑学

拓扑学是现代数学的基础,研究拓扑空间及其间的连续映射.在20世纪初期,分为一般拓扑学(也称点集拓扑学)及组合拓扑学.一般拓扑学讨论点集的一般的拓扑性质,如开、闭性、紧性、可分性、连通性等等.它们的具体体现可追溯到很久以前,但抽象化的定义则是20世纪的事情.最早的拓扑概念在康托尔、拜尔(Baire1874193z)及若尔当等人著作中已经出现,1906年弗雷歇正式提出非度量的抽象空间,同时黎斯也提出“聚点”的公理化定义,然后用它定义邻域,但真正从邻域出发定义拓扑的是豪斯道夫(FHausdorff18681942),他在1914年的《集论大纲》中通过邻域定义所谓豪斯道夫空间以及开集、闭集、边界、极限等概念,从而正式形成了一般拓扑学的分支.另一种不通过度量定义拓扑的方法是库拉托夫斯基(CKuratowski18951980)1922年提出来的,他用闭包概念定义拓扑.1923年,蒂茨(HTietze18801964)以开集做为定义拓扑的中心概念,现在通用的公理首先是亚历山大洛夫(П.С.Александров,18961982)1925年提出来的.豪斯道夫在他的书的第二版《集论》中加以总结,使—般拓扑学的表述得以确立下来.

使组合拓扑学成为一个重要的数学分支的是庞加莱.他在1881年到1886年在微分方程定性理论以及后来天体力学的研究中,都有意识地发展拓扑的思想.他从1892年起对拓扑学开始进行系统地研究.在1895年到1904年发表的关于“位置分析”的六篇论文中,他创造了组合拓扑学的基本方法并引进重要的不变量,同调及贝蒂数(1895)、基本群(1895)、挠系数(1899),并进行具体计算.他还证明了庞加莱对偶定理的最初形式.1904年他提出了著名的庞加莱猜想;单连通、闭(定向)三维流形同胚于球面.他有意识地研究两个闭流形(首先是三维流形)同胚的条件.在他的第二篇补充(1900)中,曾猜想如果两个闭流形的贝蒂数及挠系数对应相等,则它们同胚.但不久(1904)他自己就举出反例,因而他进一步把基本群考虑进去.1919年美国数学家亚力山大(J.w.Alexander18881971)举出两种透镜空间,证明它们贝蒂数、挠系数和基本群对应相等,但仍不同胚.至今三维流形的同胚问题尚未解决.

布劳威尔继庞加莱之后对拓扑学做出突出贡献,创造单纯逼进方法,使拓扑学的证明有了严格的基础.1915年亚历山大证明贝蒂数及挠系数的拓扑不变性.对偶定理是拓扑不变量之间关系的重要方面,1922年亚力山大证明亚历山大对偶定理,是对庞加莱对偶定理的重要补充及发展.1930年,列夫希兹(SLefschetz18841972)证明列夫希兹对偶定理,以上述两定理为其特殊情形.

对基本的拓扑不变量加以改造,早在1908年蒂茨的文章中已经开始,他和其他人开始考虑整数以外的系数,如模p系数及有理数.1926年亚历山大引进Zn系数.1925年底到1926年初,诺特同亚历山大洛夫等拓扑学家接触时,曾建议把组合拓扑学建立在群论基础上,在她的影响下,浩普夫(HHopf18941971)1928年定义同调群,但诺特的思想直到以后才逐步为大家了解和接受.1935年切赫(ECech18931960)考虑系数取在任何交换群中.

二十年代起,数学家曾试图把同调论从流形逐步推广到更一般的拓扑空间.先是维埃陶瑞斯(L.Vietoris1891)(1927)、亚历山大洛夫(1928)等人推广到紧度量空间,继而切赫推广到一般拓扑空间(1932),即所谓切赫同调论.同时列夫希兹发展了奇异同调论.这是两个最重要的同调理论.在代数与几何的对偶观念的影响下,许多数学家在三十年代初提出同调群的对偶观念——上同调群.除了同调群和上同调的加法结构外,许多人从各个角度寻找其中的乘法结构,列夫希兹和浩普夫在1930年左右研究流形的交口环.1935年到1938年亚力山大、切赫、惠特尼(HWhitney19071989)、柯尔莫哥洛夫(А.Н.Колмогоров,19031987)等人独立引进复形的上积.后来才证明(1952)一般同调不一定有上同调那种自然的乘法.上同调具有环的结构,带来更多的应用.1947年,斯廷洛德(NSteenrod19101971)定义了平方运算,后来发展成上同调运算的理论.

同样在三十年代,另一个更广泛的概念——同伦产生了.同伦观念的重点由拓扑空间的性质转移到空间与空间的映射的性质上.1895年庞加莱定义的基本群是第一个同伦群.其后布劳威尔、浩普夫等人对于球面到球面的映射进行过初步的研究,得出拓扑度的概念.尤其是1931年浩普夫映射的发现促使人们注意连续映射的研究.1932年,切赫在国际数学家大会上定义了高维同伦群,但未引起注意.1933年波兰数学家虎尔维兹(WHure- wicz19041956)对连续映射进行研究,在19351936年发表四篇论文,定义了高维同伦群并研究了其基本性质.虎尔维兹还定义了伦型的概念,由于当时所知的大多数拓扑不变量均为伦型不变量,使同伦论的研究有了巨大的推动力.1942年列夫希兹的《代数拓扑学》问世,标志着组合拓扑学正式转变为代数拓扑学.

 

 

【打印正文】